
120

Qubit Allocation as a Combination of Subgraph
Isomorphism and Token Swapping

MARCOS YUKIO SIRAICHI, Universidade Federal de Minas Gerais, Brazil

VINÍCIUS FERNANDES DOS SANTOS, Universidade Federal de Minas Gerais, Brazil

CAROLINE COLLANGE, Inria, Univ Rennes, CNRS, IRISA, France
FERNANDO MAGNO QUINTÃO PEREIRA, Universidade Federal de Minas Gerais, Brazil

In 2016, the first quantum processors have been made available to the general public. The possibility of
programming an actual quantum device has elicited much enthusiasm. Yet, such possibility also brought
challenges. One challenge is the so called Qubit Allocation problem: the mapping of a virtual quantum circuit
into an actual quantum architecture. There exist solutions to this problem; however, in our opinion, they
fail to capitalize on decades of improvements on graph theory. In contrast, this paper shows how to model
qubit allocation as the combination of Subgraph Isomorphism and Token Swapping. This idea has been made
possible by the publication of an approximative solution to the latter problem in 2016. We have compared
our algorithm against five other qubit allocators, all independently designed in the last two years, including
the winner of the IBM Challenge. When evaluated in łTokyo", a quantum architecture with 20 qubits, our
technique outperforms these state-of-the-art approaches in terms of the quality of the solutions that it finds
and the amount of memory that it uses, while showing practical runtime.

CCS Concepts: • Computer systems organization → Quantum computing; • Software and its engi-

neering→ Compilers; • Theory of computation→ Parameterized complexity and exact algorithms.

Additional Key Words and Phrases: Quantum computing, Qubit allocation, Graph isomorphism, Token

swapping

ACM Reference Format:

Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Caroline Collange, and Fernando Magno Quintão
Pereira. 2019. Qubit Allocation as a Combination of Subgraph Isomorphism and Token Swapping. Proc. ACM
Program. Lang. 3, OOPSLA, Article 120 (October 2019), 29 pages. https://doi.org/10.1145/3360546

1 INTRODUCTION

The recent introduction of cloud access to quantum computers has made experimental quantum
computing available to a wide community [Devitt 2016]. For instance, the IBM Quantum Experience
program1 lets users build experiments based on either a visual circuit representation or a gate-level
language based on the Quantum Assembler (QASM) syntax [Cross et al. 2017]. However, developing
quantumprograms is challenging: the level of abstraction offered by current programming languages
is low; circuits need to obey machine-specific restrictions [Häner et al. 2016]; and today’s quantum
computers have tight resource constraints. As of today, IBM users have access to architectures with

1http://research.ibm.com/ibm-q/

Authors’ addresses:Marcos Yukio Siraichi, Universidade Federal deMinas Gerais, Brazil, yukio.siraichi@dcc.ufmg.br; Vinícius
Fernandes dos Santos, Universidade Federal de Minas Gerais, Brazil, viniciussantos@dcc.ufmg.br; Caroline Collange, Inria,
Univ Rennes, CNRS, IRISA, France, caroline.collange@inria.fr; Fernando Magno Quintão Pereira, Universidade Federal de
Minas Gerais, Brazil, fernando@dcc.ufmg.br.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).
2475-1421/2019/10-ART120
https://doi.org/10.1145/3360546

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/

120:2 Marcos Siraichi, Vinícius Santos, Caroline Collange, and Fernando Quintão

5 and 16 qubits, although 20 and 50-qubit machines have been announced [Gil 2017]. Nevertheless,
the connectivity between qubits of these computers remains very restrictive. Consequently, manual
mapping and tuning of quantum algorithms is difficult.
This problem: the mapping of quantum circuits into arbitrary quantum machines has been

referred as quantum circuit placement [Maslov et al. 2008]; mapping problem [Zulehner et al. 2018];
circuit compilation [Itoko et al. 2019] and qubit allocation [Siraichi et al. 2018; Tannu and Qureshi
2019]. Henceforth, we shall adopt the latter terminology. There exist different solutions to qubit
allocation [Itoko et al. 2019; Lin et al. 2015; Maslov et al. 2008; Pedram and Shafaei 2016; Shafaei et al.
2014; Siraichi et al. 2018; Zulehner et al. 2018]; however, contrary to classic register allocation, a
problem elegantly modeled via graph coloring [Chaitin et al. 1981; Pereira and Palsberg 2005], qubit
allocation still lacks principled solutions. Subgraph isomorphism emerges as a candidate to provide
a fundamental metaphor to it. Nevertheless, subgraph isomorphism can only model small instances
of qubit allocation, which do not require transformations in the quantum circuit [Siraichi et al.
2018]. In this paper, we show how to extend this model to general circuits. Such extension has been
made possible by the recent contribution of Miltzow et al. [2016], who introduced approximations
for a problem called Token Swapping. The key insight of this paper is the observation that the
combination of subgraph isomorphism and token swapping completely models qubit allocation.
Based on this insight, this paper proposes a parameterized polynomial-time algorithm that

deconstructs qubit allocation as the combination of subgraph isomorphism and token swapping. As
we explain in Section 3, this deconstruction has two advantages: first, it simplifies the understanding
of qubit allocation, as it gives us the opportunity to revisit it under well-known ground. Second, it
gives us also the chance to use already well-established heuristics and approximations to solve qubit
allocation. Notice, however, that although these two problems are key to solve qubit allocation,
they are not enough: some algorithmic equipment is necessary to bind them together. In particular,
we propose a dynamic programming approach to find the optimal solution to the combination
of these two problems. This approach is parameterized, so as to bound the number of times we
apply it; hence, making it practical. Additionally, we provide a way to estimate the solution of
token swapping; thus, avoiding multiple applications of an expensive algorithm. Once we find a
promising candidate solution, we use Miltzow et al. [2016] approximation of token swapping to
produce a definitive solution to qubit allocation.

Section 4 presents an empirical evaluation of our ideas. This evaluation is another contribution
of this paper, which compares our technique against five state-of-the-art qubit allocators. In this
comparison, we include the algorithm currently used in the IBM Quantum Experience Toolkit;
the exhaustive search of Zulehner et al. [2018], the hill-climbing algorithm of Li et al. [2018], the
dedicated compiler of Zulehner and Wille, which won IBM’s QISKit Developer Challenge [Zulehner
and Wille 2019] in 2018, and the best-effort heuristic of Siraichi et al. [2018]. Experiments on
quantum programs publicly available show that our algorithm is able to generate more efficient
quantum circuits than other approaches. As an illustration, we produce code for the benchmarks
collected by Zulehner et al. [2018] that is 20% more cost effective than Li et al.’s allocator śone
of the best algorithms available today. To allow the reproducibility of our experiments, we have
made all the implementations used in this paper accessible through an on-line interface, where
they can be directly tried: http://cuda.dcc.ufmg.br/enfield/. This compiler, Enfield, contains several
ready-to-use backends, including ibmqx2 łTenerife" and ibmqx3 łAlbatrossž. Additionally, users
can enter new back-ends in a JSON file, if they use Enfield’s standalone distribution.

2 BACKGROUND

This section introduces the three problems to be discussed throughout this paper: qubit allocation
(Sec. 2.1); subgraph isomorphism (Sec. 2.2); and token swapping (Sec. 2.3).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

Qubit Allocation as a Combination of Subgraph Isomorphism and Token Swapping 120:3

Qubits and Quantum Gates. Quantum programs are made of qubits and reversible quantum
gates, which receive qubits as inputs, and produce qubits as outputs. The semantics of quantum
programs can be expressed in terms of linear algebraic operations, and is commonly represented
through the visual abstraction of quantum circuits. Figure 1 shows an example of quantum circuit.

H T†T

T

T†

T†

T

T H

a
0

a
1

b
0

b
1

r
0

r
1

Fig. 1. Typical representation of a quantum program.

The circuit in Figure 1 has four pseudo qubits: a0, a1, b0, represented as horizontal lines. It uses
four different types of gates to operate on these qubits: H , T , T † and CNOT. The gate CNOTab is
represented as a vertical line connecting a to b. We say that a qubit q encodes a superposition of
the two classical states 0 and 1. Its state |q⟩ consists of a two dimensional complex vector:

|q⟩ = α |0⟩ + β |1⟩ = α

(
1

0

)
+ β

(
0

1

)
=

(
α

β

)

Values |0⟩ and |1⟩ are the basis states of a 2D vector space, and α and β are complex numbers. A
set of n qubits encodes a superposition of 2n classical bit vectors of size n, whose state consists of a
2n-dimension complex vector. In this terminology, quantum gates are understood as unitary matrix
operations applied on vectors that describe quantum states. Example 2.1 illustrates this view.

Example 2.1. The Hadamard-Walsh gate H maps the basis state |0⟩ to (|0⟩ + |1⟩)/
√
2, and |1⟩ to

(|0⟩ − |1⟩)/
√
2. Thus, it is equivalent to multiplying the quantum state by the matrix:

H =
1
√
2

(
1 1
1 −1

)

Like the H and other single-qubit gates, theT gate is represented as a 2× 2 matrix that multiplies
a quantum state. Gate T † is its inverse, meaning that TT † is the identity matrix. The CNOT (short
for Controlled Not) gate applies on two qubits. CNOTab indicates that a controls b. Informally, it
negates b, the second qubit, when a, the first qubit, is |1⟩. When a is |0⟩, the gate leaves b unchanged.
Below, we show the matrix for the CNOT operation:

CNOT =

©«

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ª®®®¬
A CNOT gate applies on pairs of qubits. Pairs of qubits are represented by 4-line vectors. These

vectors come from the application of the tensor product ⊗ to the 2-line vectors that represent each
individual qubit. Example 2.2 illustrates how pairs of qubits are combined.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

120:4 Marcos Siraichi, Vinícius Santos, Caroline Collange, and Fernando Quintão

Example 2.2. If |a⟩ and |b⟩ are the states of qubits a and b, then their combined state is given by
the tensor product:

|a⟩ ⊗ |b⟩ = |ab⟩ =
(
αa
βa

)
⊗
(
αb
βb

)
=

©«

αaαb
αaβb
βaαb
βaβb

ª®®®¬
The dimension of the combination is dim(|a⟩) × dim(|b⟩).

An informal summary of the semantics of a program such as the one seen on Figure 1 is the
following: each individual gate, e.g., H , T † or T , represents a 2D-matrix; the application of such a
gate into a qubit corresponds to matrix multiplication. Example 2.3 illustrates this view.

Example 2.3. The first column in Figure 1 (CNOT and H) corresponds to the matrix product:

(I ⊗ CNOT ⊗ H)(|a0a1b0b1⟩)

The empty wire over the qubit a0 represents the identity matrix I , i.e. the absence of any gate.

The single-qubit gates plus the CNOT gate form a universal set of gates that can implement
arbitrary circuits [Barenco et al. 1995]. Nevertheless, their exact semantics is immaterial to our
exposition. Important to us is whether they are single-qubit or two-qubit gates. Even though
sequences of single-qubit gates may sometimes be simplified away, thus reducing the total cost of
the output program, we shall focus only on CNOT gates in this paper.
Architectural Constraints. Actual quantum computers might not allow CNOTs to be performed
between arbitrary pairs of qubits. In particular, quantum computers based on superconducting
qubit technology are made of solid-state circuits that only allow interactions between physically
connected qubits [Devoret et al. 2004]. Thus, technology restricts the possible shapes of the couplings
graph, a structure whose definition we revisit below:

Definition 2.4 (Coupling Graph [Gambetta et al. 2017]). Given a quantum architectureAwith a set
Q of qubits, its coupling graph is a directed graphGq = (Q,Eq),Eq ⊆ Q ×Q . The edge q1 → q2 ∈ Eq
if, and only if, CNOTq1q2 is valid in A.

2.1 Qubit Allocation

Problem 2.5 (Qubit Allocation). Input: a (directed) coupling graph Gd
q = (Q,Eq), a list Ψ =

(P × P)n ,n ≥ 1 of n control relations between pseudo qubits p ∈ P , an integer k ≥ 0, a list of

allowed quantum transformations Θ, and a function C : Θ 7→ N that gives the cost to implement

each transformation. Output: yes, if we can produce a version of Ψ that complies with Gd
q with

transformations whose total cost does not exceed k .

In its simplest form [Siraichi et al. 2018, Def-2.4], qubit allocation is equivalent to the problem of
finding an isomorphism between the coupling graph and the graph formed by the CNOT relations
in the quantum circuit. However, no isomorphism might exist. When such is the case, the compiler
must use transformations to fit a quantum circuit into the architecture. A quantum transformation
consists of additional gates inserted in the circuit. Definition 2.6 shows the transformations Θ
that we shall consider in this work. We consider only two operations: reversals and swaps, which
Figure 2 illustrates. As Definition 2.5 states, transformations have a cost, which is ultimately
determined by the gates necessary to implement them. In Section 4, we shall provide concrete
examples of such costs. Example 2.7 shows one possible result for the allocation of the program
shown in Figure 1.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

Qubit Allocation as a Combination of Subgraph Isomorphism and Token Swapping 120:5

Definition 2.6. A transformation is a sequence of quantum operations that changes the mappings
of pseudo qubits onto physical qubits. We recognize two transformations:

• Reversal: Emulation of a virtual CNOT between pa and pb controlled by pa using a CNOT
from pb to pa (controlled by pb) and 2 extra levels of Hadamard gates (Fig. 2-a).

• Swap: exchanges two pseudo qubits pa and pb , at the expense of three CNOT and four
Hadamard gates (Fig 2-c).

H

H H

Hpa

pb

=

H

H

H

H pa pb

pa

pb

= =

pb

pa

a) b)

Fig. 2. (a) Reversal. (c) Swap.

Example 2.7. Given the coupling graph in Figure 3 (a), Figure 3 (c) shows a possible allocation
of the program in Figure 1. Notice that when solving qubit allocation we can disregard single-
qubit gates: only CNOT gates matter. These gates are represented as ordered pairs. Mapping
f = {a0 7→ q0,a1 7→ q4,b0 7→ q2,b1 7→ q1} plus two reversals yields the circuit in Fig. 3 (c), which
has the same semantics as the input quantum program in Fig. 3 (b).

Qubit Allocation and Register Allocation bear similarities; however, the latter is about allocat-
ing the śunlimitedś virtual registers in the program to the ślimitedś registers in the architecture.
In contrast, in quantum computing virtual qubits are also limited: we can only have as many as
there are physical qubits in the architecture. The constraint is rather on the allowed interactions
between qubits. It is impossible to copy the state of qubits due to the no-cloning theorem [Wootters
and Zurek 1982]; hence, we have to map and route them throughout the execution of the program.

2.2 Subgraph Isomorphism

Subgraph isomorphism is one of the key components of our solution to qubit allocation. For the
sake of completeness, we define this problem below, and illustrate it in Example 2.9.

Problem 2.8 (Subgraph Isomorphism ś SIP). Input: undirected graphsG and H . Output: yes, if

we can find a subgraphH ′ ofH , plus a bijection f : V (G) → V (H ′), where for every edge (u,v) ∈ E(G),
(f (u), f (v)) ∈ E(H ′).

Example 2.9. Figure 4 shows different solutions to an instance of subgraph isomorphism. Given
the two undirected graphs in Figure 4 (a), G and H (left to right), Figure 4 (b) shows all possible
isomorphic subgraphs. The bijections are:

• {a0 7→ q0,a1 7→ q3,b0 7→ q2,b1 7→ q1};
• {a0 7→ q0,a1 7→ q4,b0 7→ q2,b1 7→ q1};
• {a0 7→ q3,a1 7→ q0,b0 7→ q2,b1 7→ q4};
• {a0 7→ q3,a1 7→ q1,b0 7→ q2,b1 7→ q4}.

Notice that a0 and b1 are equivalent w.r.t. the rest of the graph; hence by switching a0 and b1 we
double the number of bijections.

SIP is NP-complete [Cook 1971]. Different heuristics have been proposed to solve it [Cordella
et al. 2004; Han et al. 2013; Zhao and Han 2010]. As Section 3.1 will discuss, applying these heuristics
would compromise the scalability of our algorithm. Therefore, we shall propose a parameterized

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

120:6 Marcos Siraichi, Vinícius Santos, Caroline Collange, and Fernando Quintão

q2

q0

q1

q3

q4

(a1,b0)
(b0,b1)
(a0,b1)
(b0,b1)
(a0,b1)
(a0,b0)

(q4,q2)
rev(q2,q1)

(q0,q1)
rev(q2,q1)

(q0,q1)
(q0,q2)

(a) (b) (c)

Fig. 3. (a) the coupling graph; (b) the input quantum circuit; (c) the allocated quantum circuit (output) with
two uses of the reversal transformation (highlighted).

q2

q0

q1

q3

q4
b1

b0 a0

a1

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

(a)

(b)

Fig. 4. (a) two undirected graphs G and H (left to right); (b) all possible subgraphs of G isomorphic to H .

algorithm to bound the number of instances of subgraph isomorphism to be solved, and shall rely
on a greedy search to find solutions to individual instances of this problem. By bounding the search
space we might not find a optimal solution to SIP. In other words, parameterization will let us
exchange optimality for time.

2.3 Token Swapping

Token Swapping is another central element to our solution to qubit allocation. This problem was
introduced by Yamanaka et al. [2014] in 2014, and proven to be NP-hard by Miltzow et al. [2016].
For completeness, we restate the definition of this problem below:

Problem 2.10 (Token Swapping - TWP). Input: a set of colors C , an integer k , an undirected

graphG = (V ,E), a bijective function fv : V → C representing a coloring ofG , plus a bijective function

ft : V → C that assigns colored tokens to vertices. Output: yes, if we can match the colors of vertices

and tokens with up to k swap operations, where a swap exchanges tokens in two adjacent vertices.

Research around TWP is recent; hence, it has not been as deeply studied as SIP. Among current
approaches to solve token swapping, we count two approximative algorithms [Miltzow et al. 2016;
Yamanaka et al. 2017], and an exponential method [Surynek 2018]. Example 2.11 illustrates TWP.

Example 2.11. Figure 5 (a) shows both fv = {q0 7→ a,q1 7→ b,q2 7→ c,q3 7→ e,q4 7→ d}
(bigger letters outside the circle), and ft = {q0 7→ c,q1 7→ d,q2 7→ a,q3 7→ e,q4 7→ b} (smaller
letters inside the circle). Thick edges in Figure 5 (b) represent swaps. The sequence of swaps
(q2,q4), (q1,q2), (q2,q4), (q0,q2), takes us from ft to fv in 4 steps.

As we shall see in Section 3.2, token swapping lets us glue many different instances of the qubit
allocation problem. We split the bigger problem using subgraph isomorphism, and then use token

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

Qubit Allocation as a Combination of Subgraph Isomorphism and Token Swapping 120:7

c

a

b

e

d

a

c

d

e

b

q0

q1 q4

q3

q2

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

(a)

(b)

Fig. 5. (a) undirected graph of Figure 4 (a) with the labels of the vertices (fv) outside the circle, the labels of
the tokens (ft) inside the circle. Grey boxes indicate vertices whose labels do not match tokens; (b) a sequence
of swaps that solves the problem (highlighted edges).

Input
Program

Machine
Architecture (i) Program

Partitioning
(ii) Combining
Mappings

(iii) Code
Generation

Allocated
Program

(a) (b)

BMT Algorithm

Fig. 6. Steps of the BMT algorithm. (a) the output of phase (i) is a partitioned program; (b) the output of
phase (ii) is one mapping for each program partition.

swapping to stitch solutions together. The beauty of this approach is that this splitting meets
Bellman’s Principle of Optimality [Bellman 1958]. Hence, we can find an optimal solution to qubit
allocation by uniting solutions of the smaller problems via dynamic programming.

3 THE ALGORITHM

This section introduces Bounded Mapping Tree (BMT). BMT divides qubit allocation into two
subproblems: Subgraph Isomorphism (Problem 2.8) and Token Swapping (Problem 2.10). BMT
searches a solution space bounded by two parameters: the Maximum Number of Children and
the Maximum Number of Partial Solutions. We shall clarify in Section 3.1 the meaning of these
parameters. They let us control the size of the space of solutions that we search in order to solve
qubit allocation.

BMT consists of three different phases, which Figure 6 highlights: (i) qubit allocation is partitioned
into multiple instances of subgraph isomorphism, and each instance is independently solved; (ii)
all combinations of isomorphisms are evaluated via a dynamic programming model; (iii) a final
program is produced out of the best combination of isomorphisms, via token swapping. The
following sections discuss details of the three steps enumerated in Figure 6. Figure 7 summarizes
the notation used in these sections.

3.1 Program Partitioning via Subgraph Isomorphisms

The first phase of BMT splits the list of control relations into multiple partitions, and maps the
pseudo qubits in each of these subsequences into physical qubits. This phase relies on the notion of
Maximal Isomorphic Sublist, which Definition 3.1 introduces, and Example 3.2 illustrates.

Definition 3.1. [Maximal Isomorphic Sublist - MIS] Given a list of control relations Ψ, plus an
(undirected) coupling graph Gu

q , we say that Ψ(i, j) is a Maximal Isomorphic Sublist if, and only if,

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

120:8 Marcos Siraichi, Vinícius Santos, Caroline Collange, and Fernando Quintão

• [P] the set of Pseudo-Qubits in a quantum circuit.
• [Q] the set of Physical-Qubits present in the architecture. i.e. the vertices of the coupling
graph.
• [f : P → Q ∪ {⊥}] the Mapping from pseudo-qubits to physical-qubits. The symbol ⊥
denotes pseudo qubits that are not mapped to any physical qubit.
• [F : P(P → Q ∪ {⊥})] the Set of Mappings.
• [Gd

q] the Directed Coupling Graph, whose vertices (Q) are physical qubits. An edge from q1
to q2 means that q1 can control q2 via a CNOT gate.
• [Gu

q] the Undirected version of the Coupling Graph.

• [Ψ : (P × P)k] a list of Control Relations. We let Ψ(i) denote the ith relation in this list, so
that Ψ(i) = (p1,p2)means that p1 controls p2, i.e., via a CNOT gate. We let Ψ(i, j), 1 ≤ i < j ≤ k

denote a sublist of Ψ from Ψ(i) to Ψ(j). Finally, we call Ψi the ith partition of Ψ.
• [GΨ] the unique Graph determined by Ψ. The graph has a vertex vp for each pseudo-qubit p
used in Ψ, and an edge (vi ,vj) if (i, j) ∈ Ψ.
• [H ≲ G] a Subgraph Isomorphism Relation indicating that H is isomorphic to some
subgraph of G.

Fig. 7. Summary of notation used in this paper.

q0

q1

q2 q3

(r1, r0)

(r2, r0)

(r2, r1)

(r3, r0)

(r3, r1)

(r3, r2)

1

2

3

4

5

6

ΨGq G

r1 r0 ✓

r1 r0 r2 ✓

r0

r1

r2

✗

Fig. 8. From left to right, we have the coupling graph Gd
q , the list of control relations Ψ, partitioned into

Maximal Isomorphic Sublists (solid boxes), and the graphs GΨ derived from sublists of Ψ (dashed boxes).
Next to each derived graph, we show if an isomorphism is possible (✓) or not (✗).

GΨ(i, j) ≲ Gu
q , and GΨ(i, j+1) Gu

q or Ψ(j) is the last control relation. For simplicity, we shall refer to
the set of Maximal Isomorphic Sublists of Ψ as S(Ψ) = {Ψ1, . . . ,Ψn}.

Example 3.2. Figure 8 shows a coupling graph Gd
q and a list of control relations Ψ. The derived

graphs GΨ(1,1) and GΨ(1,2) for Ψ(1, 1) and Ψ(1, 2) can be embedded into the undirected version of
the coupling graph, i.e., Gu

q . However, GΨ(1,3) Gu
q . Thus, Ψ(1, 2) is a maximal isomorphic sublist.

The concept of maximal isomorphic sublist gives origin to the decision problem that we must
solve in this phase of our algorithm. We state this problem below.

Problem 3.3 (Partitioning of Control Relations ś PCR). Input: an (undirected) coupling

graph Gu
q , a list Ψ of n control relations and an integer k , k ≤ n. Output: a sequence S of k partitions

Ψ(1, i1),Ψ(i1 + 1, i2), . . . ,Ψ(ik−1 + 1, ik), such that for any Ψ(x ,y) ∈ S , we have that GΨ(x,y) ≲ Gu
q .

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

Qubit Allocation as a Combination of Subgraph Isomorphism and Token Swapping 120:9

Solving PCR. We solve PCR via an exhaustive recursive function Spcr , which generates every
possible sublist of Ψ. Given a list Ψ(1,n) of n control relations, let us assume that the sublist Ψ(1, i)
has already been split into k ′ partitions, k ′

< k . Thus, we need to split Ψ(i + 1,n) into k − k ′

partitions. We shall find the largest prefix of Ψ(i + 1,n) that gives us a maximal isomorphic sublist,
turning it into another partition of Ψ.

To this end, we start with an empty mapping f∅ = {}, i.e., the function that maps every pseudo
qubit to an undefined physical qubit ⊥. We then update f successively for each instruction in
Ψ(i + 1,n), until no longer possible. To implement Spcr , we notice that, given a mapping f , which
accounts for the x − 1 instructions in the sequence Ψ(i, i + x − 1), plus the next instruction Ψ(i + x),
only three actions are possible. To describe these three actions, we consider that Ψ(i + x) = (p1,p2).
A physical qubit that does not belong into the image of f is a free qubit. An edge in the coupling
graph formed by two free qubits is a free edge:

• if f (p1) = ⊥ and f (p2) = ⊥, then, for every free edge (q1,q2) ∈ E(Gu
q), we create a new

mapping f ′ = f ∪{p1 7→ q1,p2 7→ q2}, and call Spcr recursively for every f ′ and Ψ(i+x+1,n).
• if f (p1) = ⊥ and f (p2) , ⊥ (or f (p1) , ⊥ and f (p2) = ⊥), then only one of the pseudo
qubits needs to be mapped. Without loss of generality, let us assume that f (p1) = ⊥ and
f (p2) , ⊥. For every (f (p1),q2) ∈ E(Gu

q), such that q2 is free, we create a new mapping
f ′ = f ∪ {p2 7→ q2}, and continue recursively for every f ′ and the remaining list.

• if f (p1) , ⊥, f (p2) , ⊥ and (f (p1), f (p2)) ∈ E(Gu
q), then no update is necessary. We continue

recursively on f ,Ψ(i + x + 1,n).
If none of these three actions is possible, then Ψ(i, i+x −1) defines another partition as a maximal

isomorphic sublist. In this case, we create a set of mappings Fk ′+1 containing all mappings that
satisfy GΨ(i,i+x−1) ≲ Gu

q , and invoke Spcr over the remaining list, this time with an empty mapping.

The cost of amaximal isomorphic sublist. Function Spcr creates a sequence of sets of mappings
F1, F2, . . . , Fm ,m ≤ k . These sets range over the undirected version of the coupling graph; however,
the final product of our qubit allocation must be assigned to the actual, i.e., directed, version. Any
mapping ontoGu

q can be adjusted ontoGd
q , because we can use reversals, a quantum transformation

introduced by Definition 2.6, to invert the semantics of an edge in the coupling graph. Yet, each
reversal has a constant cost. Given a mapping f ∈ Fk ranging over the sublist Ψ(i, j), we define
its cost as the sum of the costs over each individual instruction Ψ(x) ∈ Ψ(i, j). If Ψ(i) = (p1,p2),
then this individual cost is given by the necessity to apply an inversion to implement the edge
(f (p1), f (p2)). Definition 3.4 formalizes this cost function:

Definition 3.4 (Cost of Mapping). If f is a mapping from pseudo qubits to physical qubits, then its
cost is given by a functionC : Ψ×F ×Gd

q → R. Given pseudo qubitsp1,p2 ∈ P , if (f (p1), f (p2)) ∈ Gd
q ,

then the cost is zero; otherwise, it is a constant Cr ev .

Example 3.5. Given the coupling graphGu
q and the list Ψ shown in Figure 8, we computed the

set of mappings for the first two instructions. Figure 9 illustrate these generated mappings for each
one of the instructions that compose the first partition, as well as the cost for each one of them.
Considering Cr ev = 4, below, we describe the steps we used for each instruction:

(1) Process (r1, r0): both, r1 and r0, are mapped to ⊥, and all the edges in the coupling graph are
free. Thus, we map (r1, r0) to any edge. There are six possible mappings. Cost: since q0 has
only outgoing edges, whenever r1 is not mapped to q0, we have a cost of 4;

(2) Process (r2, r0): r0 was mapped in the previous step; hence, we need to allocate r2. Each one
of the six mappings of the previous step yields different possibilities for r2. For example, the
mapping {r1 7→ q1, r0 7→ q0} gives us two possible locations for r2 in the coupling graph:

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

120:10 Marcos Siraichi, Vinícius Santos, Caroline Collange, and Fernando Quintão

(r1, r0)

(r2, r0)

r1 · q0 r0 · q1⇒ 0
✗

r1 · q0 r0 · q2⇒ 0
✗

r1 · q0 r0 · q3⇒ 0
✗

r1 · q1 r0 · q0⇒ 4 r1 · q2 r0 · q0⇒ 4 r1 · q3 r0 · q0⇒ 4

r1 · q1 r0 · q0 r2 · q2⇒ 8
✗

r1 · q1 r0 · q0 r2 · q3⇒ 8
✗

r1 · q2 r0 · q0 r2 · q1⇒ 8
✗

r1 · q2 r0 · q0 r2 · q3⇒ 8
✗

r1 · q3 r0 · q0 r2 · q1⇒ 8
✗

r1 · q3 r0 · q0 r2 · q2⇒ 8
✗

Fig. 9. Exhaustive mapping tree produced from the first instruction (r1, r0) in our running example. The
notation p · q indicates that pseudo qubit p is mapped onto physical qubit q. Mappings marked with ✗ are
dead-ends, i.e., we cannot continue the exhaustive construction of new mappings from them. We show the
cost of each mapping next to it.

q2 or q3. On the other hand, some mappings found in the previous step are dead-ends. For
instance, {r1 7→ q0, r0 7→ q1} leaves no vertex for r2, because the only neighbour of q1 in the
coupling graph is exactly q0, which was already taken by r0. Cost: we sum the cost of the
parent mapping with the cost of using the edge (f (r2), f (r0));

(3) Process (r2, r1): adding this instruction to the sequence [(r1, r0), (r2, r0)] makes it impossible
to find a valid subgraph in Gu

q . Hence, Ψ(1, 2) is a maximal isomorphic subgraph, and to map
(r2, r1) we must start afresh.

Dealing with Combinatorial Explosion. Function Spcr is exponential, and becomes quickly
unpractical as its input grows. To mitigate this problem, we bound the number of mappings via
two parameters: (i) the maximum number of children mappings and (ii) the maximum size of the set

of current mappings. The first parameter controls how many searches start from each mapping. The
other limits the number of mappings that we can consider. Figure 10 illustrates these two forms of
pruning. Pruning happens whenever we try to add a new instruction onto the current partition.
We use the weight of each mapping for pruning, by using a roulette weighted selection. In other
words, we select the mappings randomly, using their weights as a probability mass function.

In the end of this first phase, we have the input program sliced into up to k partitions S =
Ψ(1, i1),Ψ(i1+ 1, i2), . . . ,Ψ(ik−1+ 1, ik), plus the corresponding sets of mappings F = F1, F2, . . . , Fn .
Each Fj contains multiple ways to map Ψ(i j−1 + 1, i j) onto Gu

q . Each partition Ψ(x ,y) gives origin
to a derived graph GΨ(x,y) isomorphic to some subgraph of Gu

q . A byproduct of this phase is the
cost of each mapping, which is given by the function C from Definition 3.4.
Iterating the Quantum Program. Instructions in a quantum circuit do not have to be processed
in the order defined by that circuit. Quantum gates over non-overlapping qubits may be executed

in parallel; hence, we can change their order without changing the semantics of the program.
Nevertheless, we still have to keep the gate sequence applied on each qubit. Therefore, to iterate
over quantum programs, we use a directed acyclic graph (DAG) whose vertices represent gates. An
edge (дi ,дj) indicates that дi should be executed before дj . A topological ordering of this graph
determines the valid ways to iterate over the program. Whenever multiple orderings are possible,
we select the next gate to be processed based on four criteria. To explain these predicates, suppose
that (a,b) are pseudo-qubits linked by a candidate gate:

(1) a and b are mapped to adjacent physical-qubits;
(2) one of a or b is already mapped;
(3) none of a and b are mapped;
(4) both a and b are mapped.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

Qubit Allocation as a Combination of Subgraph Isomorphism and Token Swapping 120:11

f

f ′0 f ′
k

· · ·

· · · · · ·(a) (b)

Instruction
Number

21

22

23

Fig. 10. Tree of mappings for one partition. The ith level represents the possible mappings once we add the
ith instruction (on the left) to the mappings already in place. Since the number of leaves grows exponentially,
we limit them with two parameters:Mc : maximum number of children of each mapping, andMp : maximum
number of mappings per partition.

f 11

f 12

.

.

.

f 1
k1

F1

f 21

f 22

.

.

.

f 2
k2

F2

· · ·

f n1

f n2

.

.

.

f n
kn

FnF =

Fig. 11. Output from first phase F with some possible combinations represented by different paths. Each
path in this figure represents one different solution. The path representing the optimal solution is highlighted.

Complexity Analysis of the First Phase. We are generating exhaustively all the mappings
that solve the subgraph isomorphism problem. To avoid the exponential complexity, we limit
the generation process with two parameters: maximum number of children (Mc) and maximum
number of partial solutions (Mp). Thus, for every instruction, we have to generateMc mappings
for each of theMp partial solutions. Children mappings are created in O(|Q |). Therefore, the time
complexity of the first phase isO(McMp |Ψ| |Q |). Since we keep up toMp mappings for each partition
(which cannot be greater than |Ψ|), and each mapping takes O(|Q |) space, the space complexity is
O(Mp |Ψ| |Q |)

3.2 Combining Mappings via Token Swapping

In Section 3.1 we have split the list of control relations into partitions, and created a set of mappings
for each one of them. Now, we need to connect these partitions, adapting, via swaps, one mapping
into another. Figure 11 illustrates this idea: for each partition we have a collection of candidate
mappings F . We must find a path from some mapping fi ∈ F1 to some mapping fn ∈ Fn which
minimizes the cost of implementing the program. Each path consists of n − 1 hops. A hop is a way
to transform fi ∈ Fi into fi+1 ∈ Fi+1. This transformation is equivalent to Token Swapping.
There exist |Fi | × |Fi+1 | possible paths between two successive sets of candidates Fi and Fi+1.

Thus, the number of paths between F1 and Fn is exponentially large. Hence, to find the optimal path
illustrated in Figure 11, we must solve an NP-complete problem śtoken swappingś an exponential
number of times! Fortunately, there are ways to approximate Token-Swapping [Miltzow et al. 2016],
as we discuss in Section 3.2.1; and we can handle the combinatorial explosion of paths via dynamic
programming, as we explain in Section 3.2.2.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

120:12 Marcos Siraichi, Vinícius Santos, Caroline Collange, and Fernando Quintão

3.2.1 Solving the Token Swapping Problem. Recently, Miltzow et al. [2016] presented a solution
for the Token Swapping Problem that is proven to be 4-approximative. This algorithm is at least
cubic on the size of the coupling graph, e.g., O(|Q |3); however, we must still run it for at least
min |Fi |2 × #Partitions ś a task that becomes impractical even for small settings. Fortunately,
Miltzow et al. also gave us the necessary equipment to avoid this effort. Thus, instead of finding
approximations for every instance of the Token-Swapping Problem, we only estimate the cost of
each one of these problems (without providing an actual solution to it). We use the function δ from
Definition 3.6 to find such estimates. As noted in Miltzow et. al., the number of swaps ś henceforth
denoted by |∆(fprev , f)| ś is less or equal to 2 × δ (ff r eq , f). Thus, we use this upper bound as the
estimation of the number of swap operations. Example 3.7 illustrates this estimate.

Definition 3.6 (Cost of joining two successive mappings). Let d : Q ×Q → N be a function that
yields the minimum number of edges between two vertices in the coupling graph: f (a) and fprev (a).
We define δ as follows:

δ (fprev , f) =
∑

p∈P,fprev (p),⊥
d(fprev (p), f (p))

Example 3.7. Figure 12 shows the sequence of swap operations that transform fprev = {a 7→
q2,b 7→ q0, c 7→ q3,d 7→ q1} into f = {a 7→ q3,b 7→ q0, c 7→ q1,d 7→ q2}, using the architecture
from Figure 8. The δ function gives us an estimate, not the best solution for the Token-Swapping
Problem. In this example, δ (fprev , f) = d(q2,q3)+d(q0,q0)+d(q3,q1)+d(q1,q2) = 6, yet the optimal
swap sequence between fprev and f has 4 swaps.

q0
{b}

q1
{d}

q2
{a}

q3
{c}

q0
{b}

q1
{d}

q2
{a}

q3
{c}

q0
{a}

q1
{d}

q2
{b}

q3
{c}

q0
{c}

q1
{d}

q2
{b}

q3
{a}

q0
{d}

q1
{c}

q2
{b}

q3
{a}

q0
{b}

q1
{c}

q2
{d}

q3
{a}

fprev (1) (2)

(3) (4) f

Fig. 12. Steps for transforming fprev into f , assuming the coupling graph seen in Figure 8. The pseudo qubit
assigned to a physical qubit is shown in brackets. Gray edges indicate qubits that shall be swapped.

Ensuring that live qubits remain mapped. If a pseudo qubit p appears for the first time in a
control relation Ψ(i), and for the last time in a control relation Ψ(j), we say that p is alive at Ψ(i, j).
If a pseudo qubit is alive at Ψ(i, j), then it must be allocated to a physical qubit at every mapping f

related to a partition containing instructions from Ψ(i, j). Otherwise, we would produce an incorrect
quantum circuit, which might łoverwrite" qubits still in use. However, this hazard would naturally
happen if some partition Ψ(i ′, j ′) ⊂ Ψ(i, j) does not contain any reference to p.

Example 3.8. Pseudo qubit r0 is alive at the second partition in Fig. 8; however, this partition only
contains instruction Ψ(3) = (r2, r1). A solution to PCR sets f (r0) = ⊥ at partition 2. Yet, r0 shall be
necessary in the third partition; hence, it must be propagated from the first mapping to the third.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

Qubit Allocation as a Combination of Subgraph Isomorphism and Token Swapping 120:13

To prevent this kind of situation, we ensure that qubits are allocated at every partition where
they are alive. To explain how we do it, lets us assume that p is alive at Ψ(i ′, j ′), but is not used
within that partition. Let f ′ be a mapping for Ψ(i ′, j ′), where f ′(p) = ⊥. We assume that fprev
is the mapping for the previous partition, and that fprev (p) = q. We can safely assume that p is
mapped by fprev by an inductive argument: p is mapped at the first partition where it is used, and
we shall propagate it along other mappings, until the last partition that uses it. To ensure that p’s
image is defined at f ′, we let f ′(p) = q′, where q′ is the unmapped qubit that is the closest to
fprev (p). To see that q′ exists, notice that there is always more pseudo qubits than physical qubits,
and a pseudo qubit is never mapped onto two different physical qubits in the same partition.

3.2.2 Dynamic Programming. The approximations discussed in Section 3.2.1 give us the means to
calculate the cost of transforming one mapping into another, thus bridging two successive partitions
of Ψ. Yet, we must find one such path between every pair of successive partitions, as Figure 11
illustrates. As we have already discussed, the number of paths is exponentially high, in terms of the
number of partitions. However, the problem of finding an optimal path admits an exact solution in
polynomial time, via a dynamic programming algorithm. To explain how this algorithm works, we
first introduce the problem that it solves:

Problem 3.9 (Construction of a Complete Seqence of Transformations). Input: a se-

quence of n sets of mappings of pseudo to physical qubits F1, F2, . . . , Fn , the function C from Defi-

nition 3.4 and the function δ from Definition 3.6. output: a sequence f1, f2, . . . , fn , fi ∈ Fi , which

minimizes
∑
δ (fi−1, fi) +

∑
C(fi).

Problem 3.9 has optimal substructure. In other words, it can be solved optimally by breaking it
into sub-problems and then recursively finding the optimal solutions to each sub-problem. Problems
with such property admit exact solution via dynamic programming [Bellman 1958]. Definition 3.10
describes the dynamic programming subproblem, and Equation 1 shows its recurrence relation. In
Theorem 3.11 we state and prove the correctness of our solution. Finally, Example 3.13 illustrates
how we solve Problem 3.9.

Definition 3.10. (Subproblem) Our subproblem OPT (i, j) represents the optimal cost for allocating
all control relations until the i-th partition, while using f ij (the j-th mapping that satisfies the
subgraph isomorphism relation between the i-th partition and the coupling graph) as the last
mapping. i.e. it is the minimum cost using the j-th mapping generated for the i-th partition.

OPT (i, j) =

C(Ψi , f ij) i = 1

min
0≤k< |Fi−1 |

(
δ (f i−1

k
, f ij) + OPT (i − 1,k)

)
+C(Ψi , f ij) i > 1

(1)

Theorem 3.11. The recurrence relation given by Equation 1 yields an optimal solution to Problem 3.9.

Proof 3.12. The proof is a case analysis on the two branches of function OPT:

(1) Base Case: i = 1 (there is only one partition). Since we have only one partition, and we are

allocating it with f ij by definition, that is the optimal cost;

(2) Inductive Case: i > 1. Suppose OPT (i, j) is not optimal. Since it is not optimal, there must exist

another mapping f i−1
k ′ from the previous partition i −1 such that we profit more when transform-

ing f i−1
k ′ into f ij . Thus,δ (f i−1k ′ , f

i
j)+OPT (i−1,k ′) < OPT (i, j) = min

k
δ (f i−1k , f

i
j) + OPT (i − 1,k)

must be true, a contradiction.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

120:14 Marcos Siraichi, Vinícius Santos, Caroline Collange, and Fernando Quintão

(r1, r0)

(r2, r0)

(r2, r1)

(r3, r0)

(r3, r1)

(r3, r2)

r1 · q1 r0 · q0 r2 · q2
Cost = 8 OPT = 8

r1 · q1 r0 · q0 r2 · q3
Cost = 8 OPT = 8

r1 · q2 r0 · q0 r2 · q1
Cost = 8 OPT = 8

r1 · q2 r0 · q0 r2 · q3
Cost = 8 OPT = 8

r1 · q3 r0 · q0 r2 · q1
Cost = 8 OPT = 8

r1 · q3 r0 · q0 r2 · q2
Cost = 8 OPT = 8

r1 · q0 r2 · q1

r1 · q0 r2 · q2

r1 · q0 r2 · q3

r1 · q1 r2 · q0
Cost = 0 OPT = 10

r1 · q1 r2 · q0

r1 · q2 r2 · q0

r1 · q3 r2 · q0

δ = 2

δ = 2

δ = 4

δ = 4

δ = 4

δ = 4

Ψ1
Ψ2

Fig. 13. Subproblem dependency for calculating OPT of the highlighted mapping. It shall be the minimum
value of the sum of each dependency by its cost δ of transforming the previous one into the highlighted one.

Example 3.13. Figure 13 shows howwe test all combinations of mappings for the first two program
partitions. Calculating OPT (1, j) for any 1 ≤ j ≤ |F1 | is trivial (base case). For the other case, given
the recurrence relation, we have to get the minimum value given by the sum of the previous
subproblems’ optimal solution, plus the estimated number of swap operations for transforming
one mapping into another. In this case, every subproblem has an optimal cost of 8; hence, we pick
the solution with the smallest estimated transformation cost δ = 2. We repeat the process for every
f ∈ F2.

Complexity Analysis of the Second Phase. In the worst case, we have |Ψ| partitions, each
formed by one instruction. Each partition gives us up toMp mappings. For each mapping, we have
to find the minimum cost between all the Mp previous mappings, according to Equation 1. The
estimation of the swap cost takes O(|Q |), while the cost for ensuring live qubits remain mapped is
O(|Q |(|Q | + E(Gu

q))), since we execute, in the worst case, one BFS for each qubit. Hence, the time

complexity of this phase is O((Mp)2 |Ψ| |Q |(|Q | + E(Gu
q))). The space complexity is O(Mp |Ψ| |Q |):

each subproblem is O(|Q |), and we have O(Mp |Ψ|) of them.

3.3 Code Generation

The dynamic programming algorithm discussed in Section 3.2.2 gives us a sequence of mappings
f1, f2, . . . , fn , which shall guide us through the process of building a concrete program out of a
virtual quantum circuit. Each mapping corresponds to a partition of Ψ. Let f1 be the mapping for
Ψ(i, j). Mapping f gives us the information necessary to allocate all the virtuals used between the
first control instruction, e.g., Ψ(i) and the last, e.g., Ψ(j). After Ψ(j), a new partition, Ψ(j+i,k), starts.
Let us assume that the mapping that corresponds to this partition is f2. We need to create sequences
of swaps linking f1 and f2. We shall use the term ∆(f1, f2) to denote this sequence. Figure 14 shows
the product of this phase.

f1 ∆(f1, f2) f2 ∆(f2, f3) · · · ∆(fn−1, fn) fn

Fig. 14. Mappings f and swapping sequences ∆ (highlighted) give us all the information that is necessary to
transform a virtual quantum circuit into a physical quantum circuit.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

Qubit Allocation as a Combination of Subgraph Isomorphism and Token Swapping 120:15

From estimates (δ) to concrete sequences (∆). In Section 3.2 we used a heuristic, the δ function,
to over-estimate the quantity of swapping operations necessary to link consecutive mappings. To
generate code, we replace this function with the 4-approximative algorithm used by Miltzow et al.
[2016] to solve the Colored Token Swapping Problem. The δ function is an over-approximation of
Miltzow et al.’s algorithm. Thus, the actual cost of the sequence of swaps ∆ that links two successive
mappings might be lower than the cost found through δ .
Dealing with partially defined mapping functions. Miltzow et al.’s approximation receives
two mappings, fprev and f , and finds a sequence of swaps that transform fprev into f . In their
original formulation, Miltzow et al. [2016] assume that fprev and f are permutations, i.e., functions
with the same domain and image. However, in our case, these mappings do not necessarily enjoy
this property, as the live ranges of virtual qubits are not always the same. In other words, we must
account for any virtual qubit p such that fprev (p) = ⊥ and f (p) , ⊥. We recall that we do not need
to consider the possibility of fprev (p) , ⊥ and f (p) = ⊥. This case will never happen, because, as
discussed in Section 3.2.1, we ensure that live qubits remain always mapped. To make provision to
partially defined mappings, we introduce a projection operator ▽:

(fprev▽f)(p) =
{
q f (p) = q and fprev (p) , ⊥
⊥ f (p) = q and fprev (p) = ⊥

Instead of solving token swapping between fprev and f , we solve it between fprev and fprev▽f .
In other words, we solve the problem only for virtual qubits which are defined in both mappings.
Lemma 3.14 shows that this approach is sound. Example 3.16 illustrates this phase with the input
program used in the previous sections.

Lemma 3.14. Let undef (f) = {p | f (p) = ⊥,p ∈ P}. Given the mapping f ′ = fprev▽f , if the set

undef (fprev) ⊇ undef (f), then ∆(fprev , f ′) is the minimum swap sequence we can get for ∆(fprev , f).

Proof 3.15. Since undef (fprev) ⊇ undef (f), all pseudo-qubits mapped to a physical-qubitq,q , ⊥,
in fprev are defined in f . Thus, we have to allocate, at least, these pseudo-qubits. That is exactly what

f ′ is: a mapping of the pseudo-qubits mapped in fprev to their respective physical-qubits mapped in f .

Example 3.16. Figure 15 (a) shows the mappings selected for each partition of the program. Notice
that the second mapping r1 7→ q1, r2 7→ q0, r0 7→ q2 is well-defined for r0, although this pseudo
qubit is not used in the second partition, for the reasons that we have discussed in Example 3.8.
From these mappings, we are able to calculate the ∆ function for each pair of consecutive partition.
Figure 15 (b) shows the output generated in the end. All the instructions (Input Control Relations)
are translated into physical-qubits, and swapping operations are used to bridge differences between
consecutive mappings.

Complexity Analysis of the Third Phase. The algorithm given by Miltzow et al. [2016] is time-
wise expensive. That is because one of its steps is composed by the Hungarian Algorithm for
minimum matching [W. 1955] (O(|Q |3)). Besides that, the algorithm’s main loop will executeO(|Q |)
breadth first searches (BFS) for each swap. Thus, the complexity of the approximative algorithm
is O(|Q |3 + |∆| |Q |(|Q | + E(Gu

q))). |∆| is bounded by the sum of the distance of misplaced qubits.
Miltzow’s algorithm runs once per partition (|Ψ| − 1 times). Thus, the complexity of this phase is
O(|Ψ|(|Q |3 + |∆| |Q |(|Q | +E(Gu

q)))). The space complexity is the product of the number of mappings

for each partition, O(|Ψ| |Q |), and the space-complexity of the approximative algorithm O(|Q |2).

4 EVALUATION

In this section, we shall provide answers to the following research questions:

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

120:16 Marcos Siraichi, Vinícius Santos, Caroline Collange, and Fernando Quintão

(r1, r0)

(r2, r0)

(r2, r1)

(r3, r0)

(r3, r1)

(r3, r2)

r1 · q1 r0 · q0 r2 · q2

r1 · q1 r2 · q0 r0 · q2

r3 · q0

r0 · q2

r1 · q1r2 · q3

(q1,q0)
(q2,q0)

swap(q0, q2)

(q0,q1)

swap(q0, q3)

(q0,q2)
(q0,q1)
(q0,q3)

(a) (b)

Fig. 15. (a) from left to right, we have the whole input program segmented into partitions (dashed box), and
their mappings; (b) the swap operations (grey boxes) necessary to transform one mapping into another.

• [RQ1]: how do the parameters of our algorithm: maximum number of children and maximum
number of partial solutions, affect the solution that it produces to qubit allocation?

• [RQ2]: how does our algorithm compare with state-of-the-art approaches in terms of quality
of solution?

• [RQ3]: how efficient is our algorithm, in terms of space and time, compared with state-of-
the-art approaches?

• [RQ4]: how does the target architecture influence the performance of BMT, compared to
other qubit allocation algorithms?

The algorithms used in this evaluation: We compare BMT against five algorithms: IBM’s
python sdk (QISKit); Siraichi et al. [2018] weighted partial mapper (WPM); Zulehner et al. [2018]
A* search; Li et al. [2018] SWAP-based BidiREctional heuristic (SABRE); and Zulehner and Wille
[2019] dedicated SU(4) compiler, which won the IBM QISKit challenge in 2018. Henceforth, we
shall refer to these algorithms as ibm, wpm, jku2, sbr and chw. We emphasize that none of these
algorithms is guaranteed to find a global optimum, because they all resort to some simplification of
the problem, even those that run an exhaustive search, such as jku. In our case, we segment the
program greedily, and use an approximative algorithm to solve token swapping.
BMT Configuration:We have selected the values for the two parameters in our algorithm empir-
ically to obtain a good compromise between runtime and quality of solution. We shall consider
two versions of BMT : bmtF and bmtS. The former is a faster version of BMT, which uses Mc = 4
andMp = 320. The latter, the slower version, uses a more time consuming parametrization of BMT,
featuringMc = 8 andMp = 1, 280. As we shall discuss in Section 4.1, bmtF produces circuits about
1% more costly than bmtS; however, it runs approximately 70% faster.

For the sake of fairness when performing runtime comparisons, we have implemented all the
allocators in our C++ OpenQASM open source compiler Enfield. The compiler has an online
interface, publicly available at http://cuda.dcc.ufmg.br/enfield/, where users can try all the different
algorithms used in our empirical evaluation. Our implementation follows the original Python
version of each algorithm. We certify that results remain unchanged by comparing outputs. Our
implementation is always faster andmorememory frugal than the original version of each algorithm,
because we use C++ instead of Python.
Runtime Environment. Most of the tests were executed on a dedicated server featuring an
Intel(R) Xeon(TM) E5-2660 CPU @ 2.20GHz, with up to 32GB RAM, running Linux Debian Jessie

2We shall call Zulehner et al.’s first algorithm JKU because it was designed and tested at Johannes Kepler Universität Linz.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

Qubit Allocation as a Combination of Subgraph Isomorphism and Token Swapping 120:17

8.11. The experiments in Section 4.4 were executed in a commodity laptop, featuring an Intel i7
4700MQ @ 2.4GHz, with 8GB RAM, running Linux Debian Stretch 9.9. We chose a smaller machine
for this last experiment to avoid paying the cost of the dedicated server.
Benchmarks.We used the benchmarks evaluated by Zulehner et al. [2018]. These 158 programs
were taken from the RevLib collection [Wille et al. 2008], Quipper [Green et al. 2013], and Scaf-
fCC [Javadi-Abhari et al. 2014]. These suites are staple in papers on Qubit Allocation [Lao et al.
2018; Li et al. 2018; Lin et al. 2015, 2018; Pedram and Shafaei 2016; Shafaei et al. 2014; Zulehner
et al. 2018]. We have opted to use these benchmarks, instead of those recently used in the IBM
Challenge because whereas the latter are randomly generated, our benchmarks are actual quantum
circuits. We believe that the randomly produced patterns from IBM are not a good reflex of typical
quantum circuits, because they show regularity that we cannot find in human-produced programs.
Our collection, on the other hand, is more varied, because it was taken from three different sources,
and even within a single source, programs were written by more than one person.
Target architecture. The algorithms compared in this section work for any quantum architecture.
In this paper we will use ibmqx20, łTokyož [IBM 2016]. To the best of our knowledge, Tokyo
is the largest quantum computer publicly available as of February 2019. In Section 4.4, we shall
experiment with the ibmqx3, łAlbatrossž, which has 16 qubits, instead of 20.
Allocation Quality. The quality of each solution will be evaluated along three dimensions:

• Weighted Cost: the combined cost of each gate used in the program. Following common
methodology[IBM 2016], we let the cost of each CNOT be 10, and of each single-qubit gate
be 1. As discussed by Zulehner and Wille [Zulehner and Wille 2019, Sec.5], the rationale
behind this cost assignment is the fact that CNOT gates have an error rate one order of
magnitude larger than single-qubit gates. Defining only these two costs is enough for all
practical purposes, because composite gates may be rewritten as a sequence of single-qubit
gates and CNOTs.

• Gates: the total number of gates in the allocated program, without distinguishing CNOTs
from single-qubit gates. This metric has been adopted in previous work [Li et al. 2018; Pedram
and Shafaei 2016; Shafaei et al. 2014; Shrivastwa et al. 2015; Zulehner et al. 2018].

• Depth: the depth is closely related to the time a program takes to terminate. It is measured as
the longest path that must be traversed to run a quantum circuit. This metric has also being
used in previous work [Amy et al. 2013; Maslov et al. 2008; Zulehner et al. 2018]. Theoretically,
given a quantum computer that executes operations simultaneously for disjoint sets of qubits,
a program 2x deeper is likely to be 2x slower. The main benefit of running quantum programs
faster is to minimize noise due to decoherence effects, which are exponential with respect to
time. A 2x speedup would theoretically enable a quadratic improvement for decoherence-
induced error.

Allocation Efficiency. The efficiency of each solution will be evaluated along two dimensions:
• Memory Consumption: peak memory that each qubit allocation uses to process a quantum
circuit, gauged by reading /proc/self/status.

• Allocation Time: the time that each allocator needs to process a quantum circuit.
Summary of Results: Figure 16 summarizes the comparison between our approach and the five
algorithms we consider. Assuming that Rfoo and Rbmt correspond respectively to a given algorithm
and to bmtS, results are given by the ratio Rf oo/Rbmt . Each algorithm is represented by a major row.
Sub-rows (cost, depth, gates, mem and time) represent dimensions of quality and efficiency. In what
follows, we shall analyze the five dimensions of efficiency that we have reported in Figure 16: cost,
depth, gates, memory and time. The important message from Figure 16 is that bmtS outperforms
all the other algorithms in terms of cost, depth and number of gates that it produces on average.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

120:18 Marcos Siraichi, Vinícius Santos, Caroline Collange, and Fernando Quintão

Allocator. Dim G. Mean G. Std. D. B. Count B. Mean W. Count W. Mean

cost 1.0207 1.0279 11 (6.96%) 0.9669 107 (67.72%) 1.0343
depth 1.0179 1.0323 16 (10.13%) 0.9748 106 (67.09%) 1.0308
gates 1.0188 1.0217 8 (5.06%) 0.9796 110 (69.62%) 1.0286
time 0.2905 1.8705 154 (97.47%) 0.2809 4 (2.53%) 1.0534

bmtF

mem 0.9648 1.081 107 (67.72%) 0.9255 51 (32.28%) 1.0527
cost 1.8398 1.3012 2 (1.27%) 0.7062 155 (98.1%) 1.87
depth 1.9236 1.2447 2 (1.27%) 0.8133 155 (98.1%) 1.9533
gates 1.4793 1.1923 2 (1.27%) 0.7954 155 (98.1%) 1.495
time 0.0287 2.2563 158 (100%) 0.0287 0 (0%) -

chw

mem 0.9415 1.0755 123 (77.85%) 0.9173 35 (22.15%) 1.0316
cost 1.9116 1.1742 0 (0%) - 158 (100%) 1.9116
depth 1.7664 1.1687 2 (1.27%) 0.849 156 (98.73%) 1.7831
gates 1.5541 1.1347 0 (0%) - 158 (100%) 1.5541
time 0.4634 2.3381 125 (79.11%) 0.3293 33 (20.89%) 1.6889

ibm

mem 0.9258 1.0778 134 (84.81%) 0.9089 24 (15.19%) 1.026
cost 1.4729 1.254 5 (3.16%) 0.8386 149 (94.3%) 1.5167
depth 1.4424 1.2204 5 (3.16%) 0.7801 149 (94.3%) 1.487
gates 1.2789 1.1568 5 (3.16%) 0.8923 149 (94.3%) 1.303
time 0.0445 3.2652 155 (98.1%) 0.04 3 (1.9%) 10.8607

jku

mem 1.0201 1.762 105 (66.46%) 0.9021 52 (32.91%) 1.3081
cost 1.2502 1.1817 10 (6.33%) 0.8189 148 (93.67%) 1.2865
depth 1.3508 1.1652 7 (4.43%) 0.8873 151 (95.57%) 1.3773
gates 1.1663 1.1186 10 (6.33%) 0.8927 148 (93.67%) 1.1876
time 0.1193 2.3326 158 (100%) 0.1193 0 (0%) -

sbr

mem 1.0544 1.1246 65 (41.14%) 0.9483 93 (58.86%) 1.1356
cost 2.2586 1.3952 5 (3.16%) 0.8911 147 (93.04%) 2.4101
depth 2.1698 1.3511 5 (3.16%) 0.8225 148 (93.67%) 2.3015
gates 1.7553 1.2827 4 (2.53%) 0.9229 148 (93.67%) 1.8272
time 0.0112 3.106 158 (100%) 0.0112 0 (0%) -

wpm

mem 0.971 1.0903 101 (63.92%) 0.9233 56 (35.44%) 1.0628

Fig. 16. Summary of the comparison between bmtS and other algorithms. Allocator: algorithm that we
compare with bmtS. Dim: dimensions of efficiency and quality. G. Mean: geometric mean of ratios, taking
bmtS as baseline. G. Std. D.: the geometric standard deviation of the ratios. The closer to 1, the smaller the
spread of the data. B.[etter] (W.[orse] Count: the number of benchmarks where the algorithm was better
(worse) than bmtS. We use a hyphen (ł−") to mark cases where no benchmark exists. B.[etter] (W.[orse]) G.

Mean: the geometric mean of the ratios of the benchmarks where the algorithm was better (worse) than
bmtS. This column answers the following question: łwhat would be the G. Mean for this allocator, considering
only the benchmarks where it performed better (worse) than bmtS?ž Except for Better Count (B. Count), the
higher the reported value, the better for bmtS.

Moreover, its closest competitor is bmtF śanother contribution of this paper. Li et al.’s SABRE (sbr)
yields the next best results; however, its cost is still 25% higher than bmtS.

4.1 RQ1: The Influence of Parameters

As we explained in Section 3.1, the search that BMT carries out on the universe of solutions is
bounded by two parameters:Mc , the maximum number of children; andMp , the maximum number
of partial solution. To observe how these parameters impact the quality of BMT’s solutions, and
the runtime of this algorithm, we have performed an exhaustive batch of experiments with seven
different values ofMc and nine different values ofMp , for a total of 54 combinations. The values that
we chose for each parameter are:Mc : 1, 2, 4, 8, 16, 32, andMp : 10, 20, 40, 80, 160, 320, 640, 1280, 2560.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

Qubit Allocation as a Combination of Subgraph Isomorphism and Token Swapping 120:19

We run BMT three times for each combination of parameters, for each one of the 158 available
benchmarks. Figure 17 summarizes this result. In this figure, we compare each combination of
parameters against our BMT with these two parameters, e.g., Mp and Mc , set to 32 and 2,560,
respectively. Larger values are possible, but operating with them becomes very time consuming,
and we chose not to do it. We shall call this version of our algorithm BMT top . In other words,
Figure 17 reports ratios in which each dimension of efficiency is compared against that same metric
whenMc = ∞ andMp = ∞. Each cell of Figure 17 contains two values: a ratio (taking BMT top as
the baseline) and that ratio’s standard deviation

10 20 40 80 160 320 640 1280 2560

cost -1.76-(1.17) -1.55-(1.15) -1.41-(1.12) -1.29-(1.11) -1.28-(1.11) -1.29-(1.11) -1.28-(1.11) -1.28-(1.11) -1.28-(1.11)

depth -1.43-(1.10) -1.3-(1.09) -1.22-(1.07) -1.15-(1.06) -1.15-(1.06) -1.15-(1.06) -1.15-(1.06) -1.15-(1.06) -1.15-(1.06)

gates -1.49-(1.11) -1.35-(1.10) -1.27-(1.08) -1.2-(1.07) -1.19-(1.07) -1.19-(1.07) -1.18-(1.07) -1.19-(1.07) -1.19-(1.07)

time -0.05-(1.09) -0.05-(1.09) -0.06-(1.10) -0.08-(1.12) -0.08-(1.12) -0.08-(1.12) -0.08-(1.11) -0.08-(1.14) -0.08-(1.12)

mem -0.90-(1.10) -0.89-(1.10) -0.91-(1.10) -0.87-(1.09) -0.86-(1.09) -0.88-(1.10) -0.88-(1.10) -0.86-(1.09) -0.85-(1.09)

ptt -1.82-(1.34) -1.53-(1.27) -1.34-(1.21) -1.22-(1.17) -1.21-(1.16) -1.21-(1.16) -1.21-(1.16) -1.21-(1.16) -1.21-(1.16)

cost -1.49-(1.11) -1.31-(1.08) -1.21-(1.06) -1.13-(1.04) -1.08-(1.03) -1.06-(1.03) -1.06-(1.03) -1.06-(1.03) -1.05-(1.03)

depth -1.27-(1.07) -1.17-(1.05) -1.11-(1.04) -1.07-(1.03) -1.04-(1.02) -1.03-(1.02) -1.03-(1.02) -1.03-(1.02) -1.03-(1.02)

gates -1.32-(1.07) -1.21-(1.05) -1.14-(1.04) -1.09-(1.03) -1.06-(1.02) -1.05-(1.02) -1.04-(1.02) -1.04-(1.02) -1.04-(1.02)

time -0.05-(1.09) -0.05-(1.09) -0.06-(1.10) -0.08-(1.12) -0.12-(1.15) -0.13-(1.16) -0.13-(1.14) -0.13-(1.15) -0.13-(1.15)

mem -0.86-(1.09) -0.86-(1.09) -0.88-(1.10) -0.85-(1.09) -0.84-(1.09) -0.87-(1.10) -0.87-(1.09) -0.85-(1.09) -0.84-(1.08)

ptt -1.38-(1.16) -1.19-(1.10) -1.10-(1.06) -1.05-(1.04) -1.02-(1.02) -1.01-(1.02) -1.01-(1.02) -1.01-(1.02) -1.01-(1.02)

cost -1.44-(1.09) -1.27-(1.07) -1.18-(1.05) -1.11-(1.04) -1.06-(1.03) -1.03-(1.02) -1.02-(1.01) -1.01-(1.01) -1.00-(1.01)

depth -1.24-(1.06) -1.15-(1.04) -1.10-(1.03) -1.06-(1.03) -1.04-(1.02) -1.02-(1.01) -1.01-(1.01) -1.01-(1.02) -1.00-(1.02)

gates -1.29-(1.06) -1.18-(1.05) -1.12-(1.03) -1.08-(1.03) -1.05-(1.02) -1.03-(1.01) -1.02-(1.01) -1.01-(1.01) -1.00-(1.01)

time -0.05-(1.09) -0.06-(1.09) -0.06-(1.10) -0.09-(1.13) -0.13-(1.15) -0.21-(1.18) -0.31-(1.20) -0.45-(1.16) -0.67-(1.25)

mem -0.86-(1.09) -0.86-(1.09) -0.88-(1.09) -0.85-(1.09) -0.84-(1.09) -0.87-(1.10) -0.89-(1.09) -0.88-(1.09) -0.90-(1.08)

ptt -1.32-(1.14) -1.16-(1.08) -1.08-(1.05) -1.03-(1.03) -1.01-(1.02) -1.00-(1.01) -1.00-(1.01) -1.00-(1.01) -1.00-(1.01)

cost -1.43-(1.09) -1.27-(1.06) -1.18-(1.05) -1.11-(1.04) -1.06-(1.03) -1.04-(1.02) -1.02-(1.01) -1.01-(1.01) -1.00-(1.00)

depth -1.23-(1.05) -1.15-(1.04) -1.09-(1.03) -1.06-(1.02) -1.04-(1.02) -1.02-(1.01) -1.01-(1.01) -1.01-(1.01) -1.00-(1.01)

gates -1.28-(1.06) -1.18-(1.04) -1.12-(1.03) -1.08-(1.03) -1.05-(1.02) -1.03-(1.01) -1.02-(1.01) -1.01-(1.01) -1.00-(1.01)

time -0.05-(1.09) -0.06-(1.10) -0.07-(1.10) -0.10-(1.16) -0.13-(1.15) -0.22-(1.19) -0.34-(1.20) -0.54-(1.18) -0.81-(1.15)

mem -0.85-(1.09) -0.85-(1.09) -0.88-(1.10) -0.85-(1.09) -0.84-(1.09) -0.87-(1.10) -0.89-(1.09) -0.89-(1.08) -0.92-(1.07)

ptt -1.30-(1.13) -1.15-(1.08) -1.08-(1.05) -1.03-(1.03) -1.01-(1.02) -1.01-(1.04) -1.00-(1.01) -1.00-(1.01) -1.00-(1.01)

cost -1.43-(1.09) -1.27-(1.07) -1.18-(1.05) -1.11-(1.04) -1.07-(1.02) -1.04-(1.02) -1.02-(1.02) -1.01-(1.01) -1.00-(1.01)

depth -1.24-(1.06) -1.14-(1.04) -1.09-(1.03) -1.06-(1.03) -1.04-(1.02) -1.03-(1.02) -1.01-(1.02) -1.01-(1.02) -1.00-(1.01)

gates -1.28-(1.06) -1.18-(1.04) -1.12-(1.03) -1.08-(1.03) -1.05-(1.02) -1.03-(1.02) -1.02-(1.01) -1.01-(1.01) -1.00-(1.01)

time -0.05-(1.09) -0.05-(1.09) -0.07-(1.10) -0.10-(1.18) -0.13-(1.15) -0.24-(1.27) -0.37-(1.26) -0.59-(1.25) -0.89-(1.11)

mem -0.86-(1.09) -0.85-(1.09) -0.88-(1.10) -0.85-(1.09) -0.85-(1.09) -0.88-(1.09) -0.90-(1.08) -0.91-(1.07) -0.95-(1.05)

ptt -1.30-(1.14) -1.15-(1.08) -1.08-(1.05) -1.03-(1.03) -1.01-(1.02) -1.04-(1.05) -1.01-(1.03) -1.00-(1.01) -1.00-(1.01)

cost -1.44-(1.10) -1.28-(1.07) -1.18-(1.05) -1.11-(1.04) -1.07-(1.03) -1.05-(1.02) -1.03-(1.02) -1.02-(1.01) -1.00-(1.00)

depth -1.24-(1.06) -1.16-(1.04) -1.10-(1.03) -1.06-(1.02) -1.04-(1.02) -1.03-(1.02) -1.02-(1.02) -1.01-(1.02) -1.00-(1.00)

gates -1.28-(1.07) -1.18-(1.05) -1.12-(1.03) -1.08-(1.03) -1.05-(1.02) -1.04-(1.02) -1.02-(1.01) -1.01-(1.01) -1.00-(1.00)

time -0.05-(1.09) -0.06-(1.09) -0.07-(1.10) -0.10-(1.13) -0.14-(1.15) -0.24-(1.2) -0.39-(1.21) -0.63-(1.20) -1.00-(1.00)

mem -0.85-(1.09) -0.86-(1.09) -0.88-(1.09) -0.85-(1.09) -0.85-(1.09) -0.89-(1.09) -0.92-(1.08) -0.94-(1.05) -1.00-(1.00)

ptt -1.31-(1.14) -1.16-(1.09) -1.09-(1.06) -1.04-(1.03) -1.02-(1.03) -1.04-(1.05) -1.04-(1.05) -1.03-(1.05) -1.00-(1.00)

1

2

4

8

16

32

Fig. 17. Exploration of the space of parameters. Rows group results by the maximum number of children
(Mc), and columns group results by maximum number of partial solutions (Mp). Row ptt denotes the number
of partitions in which we split the quantum circuit, given a certain set of parameters.

Analysis of results. As expected, the quality of the solution improves as we increase both Mc

andMp . That is to say, the higher the values ofMc andMp , the lower the allocation cost produced
by BMT. A bit smaller configuration,Mc = 8 andMp = 1, 280, yield allocation costs within 2% of

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

120:20 Marcos Siraichi, Vinícius Santos, Caroline Collange, and Fernando Quintão

Fig. 18. (Cost) Ratio of the cost of circuits produced by the different allocators using the cost of the circuit
produced by bmtS as the baseline. The Y-axis shows the ratio of the weighted cost. The X-axis shows the
benchmarks śeach tick represents a different quantum circuit. Less is better. If we sum up the costs of all the
158 circuits, then we obtain the following absolute numbers, in ascending order: bmtS=24.5M, bmtF=25.3M,
jku=29.6M, sbr=30.3M, chw=36.8M, ibm=40.3M and wpm=50.0M. Figure 16 reports averages.

BMT top . However, raisingMp to 2,560 already gives results comparable to BMT top whenMc = 4,
but in 67% of BMT top ’s time. If we accept to produce circuits that are 3% more costly, then we can
reduce the runtime of our algorithm even more: SettingMc = 4 andMp = 320 we remain within
this bound, but run in 21% of the time taken by BMT top , on average.

4.2 RQ2:Quality of Allocation

Figure 18 compares the different allocators in terms of the circuits that they produce. Analyzing
this figure in tandem with Figure 16, we can draw the following conclusions:

• Weighted Cost: bmtS yields the lowest cost. sbr, jku, chw, ibm, and wpm were 25%, 47%, 83%,
91%, and 125% worse than our algorithm, respectively. The faster version of BMT, e.g. bmtF,
also outperforms the other algorithms. They were, respectively, 22%, 44%, 80%, 87% and 120%
worse than bmtF. bmtF was only 2% worse than bmtS;

• Depth: bmtS yields the smallest depth on average. sbr, jku, chw, ibm, and wpm were 35%,
44%, 92%, 76%, and 116% worse than our algorithm, respectively. The faster version of BMT,
e.g. bmtF, also outperforms the other algorithms. They were, respectively, 32%, 41%, 88%, 73%
and 113% worse than bmtF. bmtF was only 1.7% worse than bmtS;

• Gates: bmtS yields the smallest number of gates. sbr, jku, chw, ibm, and wpm were 16%, 27%,
47%, 55%, and 75% worse than our algorithm, respectively. The faster version of BMT, e.g.
bmtF, also outperforms the other algorithms. They were, respectively, 14%, 25%, 45%, 52%
and 72% worse than bmtF. bmtF was only 1.8% worse than bmtS;

Analysis of results. bmtSwins in cost, depth and gates, followed closely by bmtF. Both algorithms
outperform sbr, jku, ibm, and wpm by a large margin. BMT’s parameters allow users to, given
enough time and space, find better and better solutions. The fact that our algorithm outperforms
the others in terms of cost, depth and gates indicates that we generate circuits with smaller error
rates (given by the weighted costs), but also faster circuits (given by the depth). These results show
that BMT is able to yield good programs even with the maximum number of children,Mc , limited

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

Qubit Allocation as a Combination of Subgraph Isomorphism and Token Swapping 120:21

Fig. 19. (Depth) Ratio of the depth of circuits produced by the different allocators, using bmtS as the baseline.
The Y-axis shows the ratio of the weighted cost. The X-axis shows the benchmarks. Less is better. If we sum
up the depth of all the 158 circuits, then we obtain the following absolute sum of longest paths in the circuit,
in ascending order: bmtS=2.2M, bmtF=2.3M, jku=2.9M, sbr=3.2M, ibm=3.7M, chw=3.8M and wpm=4.7M. See
Figure 16 for the averages.

Fig. 20. (Gates) Ratio of the number of gates in the circuits produced by the different allocators by the
cost of the circuit produced by bmtS. The Y-axis shows the ratio of the weighted cost. The X-axis shows the
benchmarks. Less is better. If we sum up the gates used in all the 158 circuits, then we obtain the following
absolute number of gates, in ascending order: bmtS=4.21M, bmtF=4.31M, jku=4.72M, sbr=4.75M, chw=5.38M,
ibm=5.9M and wpm=6.79M. For the corresponding averages, see Figure 16.

to 8 (out of 96 possible children), and the maximum number of mappings,Mp , restricted to 1,280
(out of an exponentially large universe).

Figures 18, 19 and 20 show results for individual benchmarks, and provide absolute numbers
for our entire collection of 158 benchmarks. Notice that bmtS and bmtF still outperform the other
approaches to qubit allocation in terms of absolute numbers. However, the relative order between
these allocators change, given that some are more or less susceptible to worst cases due to the
influence of outliers. There are a few cases in which all the other algorithms can beat bmtS. even
though BMT has the potential to find optimal solutions to qubit allocation, when left unbounded,

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

120:22 Marcos Siraichi, Vinícius Santos, Caroline Collange, and Fernando Quintão

Fig. 21. (Time) Time spent by different allocators. The Y-axis shows time (seconds) in logarithmic scale.
The X-axis shows benchmarks ordered in increasing order of the time spent by bmt (shaded area). If we
sum up the time, in seconds, used during the allocation of all the 158 circuits, then we obtain the following
absolute numbers, in ascending order: jku=157secs, chw=198secs, sbr=275secs, wpm=549secs, bmtF=883secs,
ibm=1,405secs and bmtS=4,247secs. For the averages, see Figure 16.

we parameterize it to keep runtime practical. Once we need to prune off mappings, we use a random
roulette, weighted by the cost of each mapping. This is a heuristic, so, there might be problems
that do not benefit from this approach. The hypothesis behind our pruning approach is that the
smaller the number of partitions in the program, the lower its overall cost will be, because there
will be less points where swaps will be necessary. However, there are quantum circuits in which
this hypothesis is false. In these cases, even though we are glueing together a smaller number of
partitions, more swaps might be necessary between them.

4.3 RQ3: Efficiency of the Algorithm

Figure 21 shows the time that each allocator takes to map pseudo- into physical-qubits. Figure 22,
in turn, compares the allocators in terms of memory usage. From these figures, plus Figure 16, we
draw the following conclusions:

• Allocation Time: bmtS is the slowest algorithm. sbr, jku, chw, ibm, and wpm took 11%, 4.4%,
2.8%, 46%, and 1.1% the time needed by our algorithm, respectively. The faster version of
BMT, e.g. bmtF, was the third slowest one. All the other allocators, except bmtS and ibm that
took, respectively, 244% and 59% more, were faster. sbr, jku, chw, and wpm took 41%, 15%,
9.8%, and 3.8% the time needed by it, respectively;

• MemoryConsumption:On average, there is not much variationmemory-wise: sbr and jku
consumed 5.4% and 2.0% more memory, respectively, and chw, ibm, wpm and bmtF consumed,
on average, 6%, 8%, 3% and 3.6% less than bmtS. As expected, bmtF consumed a bit less
memory than bmtS. sbr, jku, and wpm consumed 9.3%, 5.7%, and 0.6% more; and ibm and chw
consumed 4.1% and 2.4% less.

Analysis of results. BMT is slower than the other allocators. On average (arithmetic mean), bmtS
takes 26 seconds per benchmark, with a standard deviation of 100 secs. The other algorithms stay
under 10 secs per sample. The slowest part of BMT is phase two’s dynamic programming search.
Dynamic programming accounts for, on average (geometric mean), 50% of the time. The first phase

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

Qubit Allocation as a Combination of Subgraph Isomorphism and Token Swapping 120:23

Fig. 22. (Memory) Memory used by different allocators. The Y-axis shows the memory (bytes) in logarithmic
scale. The X-axis shows benchmarks. Benchmarks are ordered in increasing order based on the memory used
by bmtS (shaded area). If we sum up the memory, in bytes, used during the allocation of all the 158 circuits,
then we obtain the following absolute numbers, in ascending order: ibm=13.8GB, chw=14.1GB, bmtF=14.1GB,
wpm=15.3GB, bmtS=15.7GB, jku=18.6GB and sbr=18.7GB. For the averages, see Figure 16.

comes next, with 37% of the time. In spite of its higher computational complexity, jku runs faster
than bmtF and bmtS.

Unsurprisingly, wpm is the fastest algorithm, on average. This implementation uses a best-effort
heuristic that is linear on the size of quantum circuits and on the number of qubits. However, once
we consider absolute runtimes, wpm suffers from outliers, and takes longer than other several other
algorithms to finish. For instance, wpm is faster than sbr, on average, but it takes twice its total time
to run. The reason behind this apparently paradox is that the geometric mean hides these outliers
(10 out of 158). The absolute time of these 10 benchmarks accounts for 95% of the total runtime of
wpm, and for 77% of sbr’s.

The jku implementation uses an A* tree to guide the search for a good solution to qubit allocation.
Thus, it needs to store intermediate results of this quest, to make backtracking possible. In other
words, by storing these intermediate nodes, jku trades time for space. Figure 22 indicates that
the memory usage of wpm, sbr, Q_ibm, and both BMTs grows linearly with the number of control
relations; the same cannot be inferred for jku, which contains several outliers.
We close this section summarizing the data produced to answer research questions RQ2 and

RQ3. Figure 23 subsumes these results. Interestingly, once we consider average runtime and costs,
we find that all the algorithms, except for ibm fit into the optimal convex hull of time vs cost. In
other words, following this path wpm → chw → jku → sbr → bmtF → bmtS we consistently
improve allocation cost, at the expense of runtime.

4.4 RQ4: The Influence of the Target Architecture

The experiments reported in Sections 4.1, 4.2 and 4.3 were executed in a target architecture with 20
qubits. Figure 24 (a) shows its coupling graph. In this section, we investigate how the algorithms
fare when given a different coupling graph. For this experiment, we chose Albatross3, a retired
architecture with 16 qubits, whose coupling graph Figure 24 (b) outlines. In addition of having less
qubits than Tokyo, Albatross is asymmetric: connections between qubits are one-way.

3Choosing a smaller architecture is not possible, because several of our benchmarks use at least 16 qubits.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

120:24 Marcos Siraichi, Vinícius Santos, Caroline Collange, and Fernando Quintão

0"

1000"

2000"

3000"

4000"

5000"

20" 30" 40" 50"

0"

0.2"

0.4"

0.6"

0.8"

1"

1" 1.2" 1.4" 1.6" 1.8" 2" 2.2" 2.4"

bmtS (1.0, 1.0)

bmtF (1.02, 0.29)

chw (1.83, 0.02)

ibm (1.91, 0.46)

jku (1.47, 0.04)

sbr (1.25, 0.12)

wpm (2.25, 0.01)

Average Cost (wrt bmtS)

A
v
e

ra
g

e
 t
im

e
 (

w
rt

 b
m

tS
) bmtS (24.5, 4247)

bmtF (25.3, 883)

chw (36.8, 198)
jku (29.6, 154)

sbr (30.3, 275)

wpm (50, 549)

A
b

s
o

lu
te

 t
im

e
 (

s
e

c
s
)

Absolute cost (sum of gate costs)

ibm (40.3, 1405)

Fig. 23. Runtime vs Weighted Allocation Cost for all the algorithms compared in this evaluation. Allocation
cost is measured as the sum of all the weighted costs of gates used to compose the quantum circuit after
qubit allocation (result is given in millions).

Q1 Q2 Q3 Q4

Q5Q6Q7

Q8 Q9 QA

QBQCQDQEQF

Q0

QS QR QQ QPQT

QL QM QN QOQK

QI QH QG QFQJ

QB QC QD QEQA(a) (b)

Fig. 24. Coupling graphs for: (a) ibmqx20 łTokyo", with 20 qubits. (b) ibmqx3 łAlbatrossž, with 16 qubits.

Figure 25 compares the performance of the seven algorithms considered in this paper, using
Albatross’ coupling graph. We run these experiments in a commodity laptop with 8GB of RAM,
instead of the dedicated server (with 32GB of RAM) used in the three previous sections. Reason was
cost: scheduling experiments in the server incurs into a monetary cost and follows a constrained
time table. Furthermore, a simpler machine lets us show that our algorithms are practical.

We had to remove seven benchmarks from the experiments used to produce Figure 25, because
jku could not handle them given the amount of available memory. The other six algorithms have
been able to compile all the 158 benchmarks. If we include the missing seven benchmarks, then the
cost of circuits produced by bmtS jumps from 37.6 million up to 58.3 million.
The jku and sbr allocators tend to produce circuits with lower cost than bmtS and bmtF, in

Albatross. Adding back the seven excluded benchmarks does not change this scenario: sbr still
outperforms the two instances of BMT. However, bmtS and bmtF produce circuits of shorter depth,
on average, than the other algorithms, being amost 25% more efficient than sbr in this criterion.
By construction, BMT is prone to produce circuits of short depth, because it tries to increase the
size of each partition of the circuit. Less partitions do not necessarily, lead to lower costs, but tend
to reduce circuit depth. The more connected the coupling graph, the better tends to be BMT’s
performance with regards to sbr. To support this statement, we have compared bmtS, bmtF, wpm
and sbr using random graphs produced according to the Erdös-Rényi model [Erdös and Rényi
1959]. We omit jku, because some experiments could not terminate due to lack of memory. Graph
generation takes a parameter p, corresponding to the probability of adding an edge. We pick up

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

Qubit Allocation as a Combination of Subgraph Isomorphism and Token Swapping 120:25

0	

0.2	

0.4	

0.6	

0.8	

1	

0.9	 1	 1.1	 1.2	 1.3	 1.4	 1.5	 1.6	

A
v
e
ra

g
e
 t

im
e
 (
w

rt
 b

m
tS

)

Average cost (wrt bmtS)

bmtS (1.00, 1.00)

bmtF(1.01, 0.64)

sbr(0.98, 0.10)

jku(0.96, 0.03) chw(1.21, 0.02)

ibm(1.27, 0.26)

wpm(1.56, 0.01)

0.9	

1	

1.1	

1.2	

1.3	

1.4	

1.5	

1.6	

1	 1.1	 1.2	 1.3	 1.4	 1.5	 1.6	 1.7	

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

g
a
te

s
 (
w

rt
 b

m
tS

)

Average depth (wrt bmtS)

bmtS (1.00, 1.00)

bmtF(1.01, 1.01)

sbr(1.24, 1.13)

jku(1.04, 0.96)

chw(1.43, 1.34)

ibm(1.45, 1.49)

wpm(1.69, 1.50)

Fig. 25. Comparison between different qubit allocators in the Albatross architecture. We had to remove seven
benchmarks from our collection of 158 circuits to perform this experiment, because jku requires more than
8GB of memory to compile them.

graphs that have a certain diameter, given a fixed p. Figure 26 shows the result of this comparison,
in terms of cost and depth for graphs with 16, 20 and 24 vertices (qubits) and diameters of 2 (p = 0.2),
4 (p = 0.1), 6 (p = 0.1) and 8 (p = 0.05) edges. These results are congruous with the fact that BMT’s
quality is better on Tokyo than on Albatross (which has a sparser coupling graph), and also support
the hypothesis that BMT reduces depth as connectivity grows.

●●●

●
●
●

●

●●

●

●
●

●

●

0.6

0.9

1.2

1.5

1.8

2 4 6 8 9
Diameter

Allocator ●● bmtF bmtS wpm Qubits ● ● ●16 20 24

●●●

●

●

●

●

●●

●

●
●

●

●

0.75

1.00

1.25

1.50

1.75

2 4 6 8 9
Diameter

Allocator ●● bmtF bmtS wpm Qubits ● ● ●16 20 24
cost depth

Tokyo Albatross Tokyo Albatross

9.15

7.26

8.1

9.08

7.19

8.03 8.02
7.31 7.58

11.42
10.86

9.83

0.00

3.00

6.00

9.00

Diameter 2 4 6 8

83.3

68.4 69.09

82.26

67.53 68.16

51.87
47.8 48.72

91.72
87.58

76.05

0.00

25.00

50.00

75.00

Diameter 2 4 6 8

bmtF bmtS sbr wpm

Q16 Q20 Q24 Q16 Q20 Q24 Q16 Q20 Q24 Q16 Q20 Q24

bmtF bmtS sbr wpm

Q16 Q20 Q24 Q16 Q20 Q24 Q16 Q20 Q24 Q16 Q20 Q24

cost depth

Fig. 26. Comparison of different qubit allocators in randomly produced graphs with 16, 20 and 24 qubits, and
diameters of 2, 4, 6 and 8 nodes. The first row shows the results w.r.t. sbr. The black points in the highlighted
areas locate the Tokyo and Albatross architectures. The second row shows the absolute results (in millions)
for weighted cost (left), and depth (right) for all allocators. For each allocator, there are three groups (qubit
number) of four bars (diameter). Each bar provides the result of using a given allocator on a different set of
graphs.

4.5 Discussion: Qubit Allocation as a Tool TowardsQuantum Supremacy

An important question that concerns the material covered in this paper is: łis the time required
to compile and execute a circuit allocated with BMT on a quantum computer significantly less
than the time required to solve the same problem with a digital computer?" In other words, we

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

120:26 Marcos Siraichi, Vinícius Santos, Caroline Collange, and Fernando Quintão

are interested in knowing if there exists a particular problem size at which point the overhead
incurred by bounded mapping trees becomes negligible. The answer to this question is positive,
as we will argue in this section. However, the current prototypes of quantum computers that we
have access today do not let us show this benefit with numbers. Even obtaining the runtime of
a quantum circuit in the IBM Qiskit is not trivial today, due to the infrastructure to access the
quantum computer. Yet, we can estimate the time to compile a circuit with BMT and run it on a
quantum computer versus the time to simulate the circuit.
The current record of simulation of a quantum program on a digital machine stays at 60

Qubits [Dang et al. 2019] śfour more than the previous record, from October of 2018 [Pednault et al.
2018]. As mentioned by Dang et al., the simulation of a 50-qubits random state might require up to
18 petabytes of classical computer memory. In both works, Dang’s and Pednault’s, simulation at
such scale was only possible by exploring particular characteristics of the algorithm to be simulated.
The consensus today is that above 50 entangled qubits, simulation of general quantum programs
in classical hardware becomes an intractable problem, with prohibitively high costs. To give the
reader some perspective on these numbers, Markov et al. simulate approximate sampling of a 7 × 8
qubits architecture [Markov et al. 2018]. At a fidelity rate of 0.5%, their cost (estimated as cloud
service fees) to simulate a circuit with 1+40+14 layers of depth would be around 35 thousand dollars.
A deeper circuit, e.g., with 1+48+1 layers would add one million US dollars to this baseline cost.

Execution of the same circuit on a quantum computer is likely faster. Markov et al. provide the
following estimates: łWhen sampling outputs on a quantum computer based on superconducting

qubits, reported times are around 45ns per cycle with CNOT gates along the Z axis, 25ns per cycle with

only single-qubit gates [Kelly et al. 2014]. Readout can be as fast as 140ns [Sank et al. 2014], and qubits

can be initialized to a known state in a few hundred nanoseconds [Magnard et al. 2018]."
Similarly, the time to run qubit allocation on a quantum circuit is much lower than the time

to simulate it. We have compiled circuits with up to 100 qubits in commodity hardware. As an
example, an 100-qubit Quantum Fourier Transform algorithm takes up to 150 and 500 seconds to be
compiled by bmtF and bmtS, respectively. Thus, even though BMT runs in exponential time (when
left unbounded), parameterization ensures that its execution time remains practical. Furthermore,
due to material constraints like cooling to cryogenic temperature, we expect quantum computer
time to remain much more expensive than classical computer time in the near future. So it is still a
reasonable tradeoff to spend several seconds on commodity hardware to save milliseconds on a
very expensive equipment. Finally, the benefit of reducing gate count or circuit depth śsomething
that qubit allocation accomplishesś is not just a shorter execution time, but much more importantly,
a lowered exposure to noise and decoherence, which leads to better accuracy of quantum programs.

5 RELATED WORK

Qubit allocation is a relatively recent issue. In 2004 Svore et al. mentioned the need to insert
movement instructions, e.g., swaps, as a step in a general design flow to map a program representing
a quantum computing algorithm into a technology-specific hardware. That early report did not
provide an algorithm for solving qubit allocation, although the authors have addressed this challenge
later [Häner et al. 2016; Svore et al. 2006]. We believe that the first formal treatment of the problem,
with definitions, complexity analyses and heuristics, was proposed by Maslov et al. in 2008. Earlier
works would either solve qubit allocation manually, or present allocators only for specific quantum
algorithms [Blais 2001; Copsey et al. 2003; Oskin et al. 2002; Saito et al. 2000]. Qubit allocation has
several variations, all of which are NP-complete [Siraichi et al. 2018]. Such diversity has led to an

4Markov et al. explicitly denote layers of Hadamard gates with ł1+" at the beginning of the circuit, and ł+1" at the end. The
other layers include other one-qubit gates and controlling CNOT gates.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

Qubit Allocation as a Combination of Subgraph Isomorphism and Token Swapping 120:27

equally varied number of solutions. Our compiler, Enfield, implements the algorithms that we
were aware of, and whose source code we could easily find, or whose authors were kind enough to
help us. Some algorithms we decided not to implement, for the following reasons:

• Restricted design: some heuristics target specific quantum architectures. Architectures are
determined by the shape of the coupling graphs; e.g.: 2D grids and lines [Lin et al. 2015, 2018;
Pedram and Shafaei 2016; Shafaei et al. 2014; Shrivastwa et al. 2015].

• Runtime complexity: several heuristics suffer from a worst case exponential execution
time. Contrary to our design, this runtime penalty is mandatory, i.e., it cannot be bounded
via parameters [Itoko et al. 2019; Lao et al. 2018; Lin et al. 2018; Maslov et al. 2008; Shafaei
et al. 2014; Zulehner et al. 2018].

• Swaps only: most of the solutions to qubit allocation rely on swaps as the transformation
available to fit logical circuit into physical coupling graphs [Lao et al. 2018; Li et al. 2018; Lin
et al. 2015; Maslov et al. 2008; Pedram and Shafaei 2016; Shafaei et al. 2014]; hence, reversals
are not considered.

Token Swapping and Subgraph Isomorphism. Token swapping was formalized and proven
NP-complete recently [Yamanaka et al. 2014]. Since then, this problem has been extensively stud-
ied [Bonnet et al. 2016; Kawahara et al. 2017; Miltzow et al. 2016; Yamanaka et al. 2017, 2014]. We
know two concrete implementations of algorithms that solve token swapping exactly [Miltzow
et al. 2016; Siraichi et al. 2018]. These algorithms have exponential runtime. In this paper, to solve
token swapping, we implement the 4-approximative algorithm from Miltzow et al. [2016], which
runs in polynomial time. In contrast, subgraph isomorphism is an old problem. There are several
heuristics and exact algorithms to solve it [Cordella et al. 2004; Han et al. 2013; Zhao and Han 2010].
We use a best-effort approach. Thus, the search discussed in Section 3.1 might not find a solution,
even though a solution might exist.

6 CONCLUSION

This paper has introduced a new model for Qubit Allocation, based on subgraph isomorphism and
token swapping. We believe that these two problems provide a new principled approach to solve
Qubit Allocation, in a way similar to what graph coloring has done to classic register allocation. And,
just like there exist many solutions to register allocation based on graph coloring, several solutions
to qubit allocation based on this combination of subgraph isomorphism and token swapping are
possible. In this paper we have explored one among such possibilities. Our algorithm outperforms
several state-of-the-art solutions to this problem along three different dimensions: weighted cost;
depth; and number of gates, in a quantum architecture with 20 qubits. When we consider these
metrics, our algorithm delivers better results than previous work, both in terms of averages and in
terms of absolute numbers, at the expense of a longer runtime. The design and implementation of
other solutions to Qubit Allocation, also based on the Isomorphism-Swapping combination, is an
interesting research direction that we hope to explore in the future.

ACKNOWLEDGEMENT

This project was funded by grants from FAPEMIG (Grant APQ-03832-14 łCooperation FAPs-INRIA-
CNRS"), CNPq (Grant 406377/2018-9) and CAPES. We thank the referees for the time and expertise
they have put into reviewing our work. Their suggestions have greatly improved our paper.

REFERENCES

Matthew Amy, Dmitri Maslov, Michele Mosca, and Martin Roetteler. 2013. A Meet-in-the-Middle Algorithm for Fast
Synthesis of Depth-Optimal Quantum Circuits. Trans. Comp.-Aided Des. Integ. Cir. Sys. 32, 6 (jun 2013), 818ś830.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

120:28 Marcos Siraichi, Vinícius Santos, Caroline Collange, and Fernando Quintão

Adriano Barenco, Charles H Bennett, Richard Cleve, David P DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator,
John A Smolin, and Harald Weinfurter. 1995. Elementary gates for quantum computation. Physical review A 52, 5 (1995),
3457.

Richard Bellman. 1958. On a Routing Problem. Quart. Appl. Math. 16 (1958), 87ś90.
Alexandre Blais. 2001. Quantum network optimization. Phys. Rev. A 64 (Jul 2001), 022312. Issue 2.
Édouard Bonnet, Tillmann Miltzow, and Pawel Rzazewski. 2016. Complexity of Token Swapping and its Variants. CoRR

arXiv:1607.07676, Article 2 (2016), 23 pages.
Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hopkins, and Peter W. Markstein. 1981.

Register Allocation via Coloring. Comput. Lang. 6, 1 (1981), 47ś57.
Stephen A. Cook. 1971. The Complexity of Theorem-proving Procedures. In STOC. ACM, NY, USA, 151ś158.
Dean Copsey, Mark Oskin, Tzvetan Metodiev, Frederic T. Chong, Isaac Chuang, and John Kubiatowicz. 2003. The Effect of

Communication Costs in Solid-state Quantum Computing Architectures. In SPAA. ACM, New York, NY, USA, 65ś74.
L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. 2004. A (sub)graph isomorphism algorithm for matching large graphs.

TPAMI 26, 10 (Oct 2004), 1367ś1372.
Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. 2017. Open Quantum Assembly Language. IBM,

Armonk, NY, USA.
Aidan Dang, Charles D. Hill, and Lloyd C. L. Hollenberg. 2019. Optimising Matrix Product State Simulations of Shor’s

Algorithm. CoRR 3 (2019), 116ś125.
Simon J. Devitt. 2016. Performing quantum computing experiments in the cloud. Phys. Rev. A 94, 3 (2016), 032329.
Michel H Devoret, Andreas Wallraff, and John M Martinis. 2004. Superconducting qubits: A short review. arXiv 0411174

(2004), 1ś41.
P. Erdös and A. Rényi. 1959. On Random Graphs I. Publicationes Mathematicae 6 (1959), 290ś297.
Jay M Gambetta, Jerry M Chow, and Matthias Steffen. 2017. Building logical qubits in a superconducting quantum computing

system. NPJ Quantum Mechanics 3, Article 2 (2017), 7 pages.
Dario Gil. 2017. The Future of Computing: AI and Quantum. Online video.
Alexander S Green, Peter LeFanu Lumsdaine, Neil J Ross, Peter Selinger, and Benoît Valiron. 2013. Quipper: a scalable

quantum programming language. In SIGPLAN Notices, Vol. 48. ACM, NY, USA, 333ś342.
Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. 2013. Turboiso: Towards Ultrafast and Robust Subgraph Isomorphism

Search in Large Graph Databases. In SIGMOD. ACM, NY, USA, 337ś348.
Thomas Häner, Damian S. Steiger, Krysta M. Svore, and Matthias Troyer. 2016. A Software Methodology for Compiling

Quantum Programs. CoRR abs/1604.01401 (2016), 1ś14.
IBM. 2016. IBM QX Devices. https://quantumexperience.ng.bluemix.net/qx/devices
Toshinari Itoko, Rudy Raymond, Takashi Imamichi, Atsushi Matsuo, and AndrewW. Cross. 2019. Quantum Circuit Compilers

Using Gate Commutation Rules. InASPDAC. ACM, New York, NY, USA, 191ś196. https://doi.org/10.1145/3287624.3287701
Ali Javadi-Abhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T Chong, and Margaret Martonosi. 2014.

ScaffCC: a framework for compilation and analysis of quantum computing programs. In Computing Frontiers. ACM, NY,
USA, 1.

Jun Kawahara, Toshiki Saitoh, and Ryo Yoshinaka. 2017. The Time Complexity of the Token Swapping Problem and Its
Parallel Variants. InWALCOM. Springer, Heidelberg, Germany, 448ś459.

J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell, Yu Chen, Z. Chen, B.
Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, A. N.
Cleland, and John M. Martinis. 2014. State preservation by repetitive error detection in a superconducting quantum
circuit. CoRR arXiv:1411.7403 (2014), 1ś30.

L. Lao, B. van Wee, I. Ashraf, J. van Someren, N. Khammassi, K. Bertels, and C. G. Almudever. 2018. Mapping of Lattice
Surgery-based Quantum Circuits on Surface Code Architectures. arXiv:arXiv:1805.11127

Gushu Li, Yufei Ding, and Yuan Xie. 2018. Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices.
arXiv:arXiv:1809.02573 To appear in ASPLOS’19.

C. C. Lin, S. Sur-Kolay, and N. K. Jha. 2015. PAQCS: Physical Design-Aware Fault-Tolerant Quantum Circuit Synthesis.
TVLSI 23, 7 (2015), 1221ś1234.

Y. Lin, B. Yu, M. Li, and D. Z. Pan. 2018. Layout Synthesis for Topological Quantum Circuits With 1-D and 2-D Architectures.
TCAD 37, 8 (2018), 1574ś1587.

Paul Magnard, Philipp Kurpiers, Baptiste Royer, Theo Walter, Jean-Claude Besse, Simone Gasparinetti, Marek Pechal,
Johannes Heinsoo, Simon Storz, Alexandre Blais, and Andreas Wallraff. 2018. Fast and Unconditional All-Microwave
Reset of a Superconducting Qubit. CoRR arXiv:1801.07689 (2018), 1ś9.

Igor L. Markov, Aneeqa Fatima, Sergei V. Isakov, and Sergio Boixo. 2018. Quantum Supremacy Is Both Closer and Farther
than It Appears. CoRR arXiv:1807.10749 (2018), 1ś32.

D. Maslov, S. M. Falconer, and M. Mosca. 2008. Quantum Circuit Placement. TCAD 27, 4 (2008), 752ś763.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

Qubit Allocation as a Combination of Subgraph Isomorphism and Token Swapping 120:29

Tillmann Miltzow, Lothar Narins, Yoshio Okamoto, Günter Rote, Antonis Thomas, and Takeaki Uno. 2016. Approximation
and Hardness of Token Swapping. In ESA. Schloss Dagstuhl, Dagstuhl, Germany, 66:1ś66:15.

M. Oskin, F. T. Chong, and I. L. Chuang. 2002. A practical architecture for reliable quantum computers. Computer 35, 1 (Jan
2002), 79ś87. https://doi.org/10.1109/2.976922

Edwin Pednault, John A. Gunnels, Giacomo Nannicini, Lior Horesh, Thomas Magerlein, Edgar Solomonik, Erik W. Draeger,
Eric T. Holland, and Robert Wisnieff. 2018. Breaking the 49-Qubit Barrier in the Simulation of Quantum Circuits. CoRR
arXiv:1710.05867 (2018), 1ś29.

M. Pedram and A. Shafaei. 2016. Layout Optimization for Quantum Circuits with Linear Nearest Neighbor Architectures.
Circuits and Systems Magazine 16, 2 (2016), 62ś74.

Fernando Magno Quintão Pereira and Jens Palsberg. 2005. Register Allocation Via Coloring of Chordal Graphs. In APLAS.
Springer, Heidelberg, Germany, 315ś329.

A. Saito, K. Kioi, Y. Akagi, N. Hashizume, and K. Ohta. 2000. Actual computational time-cost of the Quantum Fourier
Transform in a quantum computer using nuclear spins. arXiv:quant-ph/0001113

Daniel Sank, Evan Jeffrey, J.Y. Mutus, T.C. White, J. Kelly, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A. Megrant A. Dunsworth,
P.J.J. O’Malley, C. Neill, P. Roushan, A. Vainsencher, J. Wenner, A.N. Cleland, and J.M. Martinis. 2014. Fast Scalable State
Measurement with Superconducting Qubits. CoRR arXiv:1401.0257 (2014), 1ś9.

A. Shafaei, M. Saeedi, and M. Pedram. 2014. Qubit placement to minimize communication overhead in 2D quantum
architectures. In ASP-DAC. IEEE, Washington, DC, USA, 495ś500.

R. R. Shrivastwa, K. Datta, and I. Sengupta. 2015. Fast Qubit Placement in 2D Architecture Using Nearest Neighbor
Realization. In iNIS. IEEE, NY, USA, 95ś100.

Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Sylvain Collange, and Fernando Magno Quintao Pereira. 2018. Qubit
Allocation. In CGO. ACM, NY, USA, 113ś125.

Pavel Surynek. 2018. Finding Optimal Solutions to Token Swapping by Conflict-based Search and Reduction to SAT.
arXiv:arXiv:1806.09487

Krysta M. Svore, Alfred V. Aho, AndrewW. Cross, Isaac Chuang, and Igor L. Markov. 2006. A Layered Software Architecture
for Quantum Computing Design Tools. Computer 39, 1 (2006), 74ś83.

Krysta Marie Svore, A. Cross, and I-Hsun Chuang. 2004. Toward a Software Architecture for Quantum Computing Design
Tools.

Swamit Tannu and Moinuddin Qureshi. 2019. A Case for Variability-Aware Policies for NISQ-Era Quantum Computers. In
ASPLOS. ACM, NY, USA, To appear.

Kuhn H. W. 1955. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly 2, 1-2 (1955),
83ś97.

R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. 2008. RevLib: An Online Resource for Reversible Functions
and Reversible Circuits. In ISMVL. IEEE, NY, USA, 220ś225.

W. K. Wootters and W. H. Zurek. 1982. A single quantum cannot be cloned. Nature 299 (oct 1982), 802ś803. https:
//doi.org/10.1038/299802a0

Katsuhisa Yamanaka, Erik D. Demaine, Takashi Horiyama, Akitoshi Kawamura, Shin-ichi Nakano, Yoshio Okamoto, Toshiki
Saitoh, Akira Suzuki, Ryuhei Uehara, and Takeaki Uno. 2017. Sequentially Swapping Colored Tokens on Graphs. In
WALCOM: Algorithms and Computation, Sheung-Hung Poon, Md. Saidur Rahman, and Hsu-Chun Yen (Eds.). Springer,
Heidelberg, Germany, 435ś447.

Katsuhisa Yamanaka, Erik D. Demaine, Takehiro Ito, Jun Kawahara, Masashi Kiyomi, Yoshio Okamoto, Toshiki Saitoh, Akira
Suzuki, Kei Uchizawa, and Takeaki Uno. 2014. Swapping Labeled Tokens on Graphs. Springer, Heidelberg, Germany,
364ś375.

Peixiang Zhao and Jiawei Han. 2010. On Graph Query Optimization in Large Networks. Proc. VLDB Endow. 3, 1-2 (2010),
340ś351.

Alwin Zulehner, Alexandru Paler, and Robert Wille. 2018. Efficient mapping of quantum circuits to the IBM QX architectures.
In DATE. IEEE, NY, USA, 1135ś1138.

Alwin Zulehner and Robert Wille. 2019. Compiling SU(4) Quantum Circuits to IBM QX Architectures. In ASPDAC. ACM,
New York, NY, USA, 185ś190.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 120. Publication date: October 2019.

	Abstract
	1 Introduction
	2 Background
	2.1 Qubit Allocation
	2.2 Subgraph Isomorphism
	2.3 Token Swapping

	3 The Algorithm
	3.1 Program Partitioning via Subgraph Isomorphisms
	3.2 Combining Mappings via Token Swapping
	3.3 Code Generation

	4 Evaluation
	4.1 RQ1: The Influence of Parameters
	4.2 RQ2: Quality of Allocation
	4.3 RQ3: Efficiency of the Algorithm
	4.4 RQ4: The Influence of the Target Architecture
	4.5 Discussion: Qubit Allocation as a Tool Towards Quantum Supremacy

	5 Related Work
	6 Conclusion
	References

